Asymmetric Synthesis of (–)-6-epi-Centrolobine

Chada Raji Reddy,* Pasupulety Phani Madhavi, Srivari Chandrasekhar
Organic Division – I, Indian Institute of Chemical Technology, Hyderabad 500007, India
Fax +91(40)27160512; E-mail: rajireddy@iict.res.in
Received 14 May 2008; revised 28 May 2008

Abstract: A stereoselective total synthesis of (–)-6-epi-centrolobine, an unnatural analogue of (–)-centrolobine, starting from readily available tri-O-acetyl-D-glucal has been described for the first time. The key steps involved in this synthetic approach are stereoselective C-glycosidation, dehydroxylation and Wittig reaction. The target molecule was achieved in nine steps with 49% overall yield.

Key words: centrolobine, tri-O-acetyl-D-glucal, C-glycosidation, dehydroxylation, Wittig reaction

(–)-Centrolobine (1) is a natural product obtained from the Amazon forest, isolated from the heartwood of Centrolobium robustum and from the stem of Brosinium potabile.1 Centrolobine is known to exhibit anti-leishmanial activity against Leishmania amazonensis promastigotes.2 The absolute configuration of this natural product was determined in 2002 by Colobert et al. via asymmetric total synthesis.3 Due to the biological importance and relatively simple structure of (–)-centrolobine, it makes a perfect target for synthetic organic chemists and its enantioselective synthesis has been achieved by various groups,4 including ours.5 After the synthesis of (–)-centrolobine (1), we turned our attention to the synthesis of its analogues, unnatural derivatives, which can be used to study structure–activity relationships (SARs), with the anticipation of obtaining better biological activity. Towards this aim, herein we report the asymmetric synthesis of (–)-6-epi-centrolobine (2; Figure 1), a non-natural analogue.

From a retrosynthetic perspective, we envisioned 2, 6-trans-disubstituted dihydropyran 4 as a precursor, which would lead to 2 through a Wittig reaction with 3 followed by a hydrogenation reaction. We postulated that this precursor 4 could be accessed by a palladium-catalyzed stereoselective C-glycosidation of tri-O-acetyl-D-glucal 5 followed by dehydroxylation as key reactions (Scheme 1).

Thus, C-aryl pseudoglycal 7 was prepared by the stereoselective C-glycosidation of tri-O-acetyl-D-glucal (5) with 4-methoxyphenylboronic acid (6) in the presence of Pd(OAc)₂, in 78% yield (Scheme 2). Next, deacetylation of compound 7 was carried out using potassium carbonate to afford the diol 8 in 96% yield. The primary hydroxyl group of diol 8 was selectively protected as its tert-butyldimethylsilyl (TBDMS) ether using imidazole and TBAF in 91% yield. Dehydroxylation of the secondary hydroxyl group of compound 9 was achieved via tosylation of the hydroxyl group using p-toluenesulfonyl chloride/pyridine followed by the treatment with lithium aluminium hydride to give 10 (88% yield, two steps). At this stage, the TBDMS protection in 10 was removed by tetrabutylammonium fluoride (TBAF) to reveal the primary alcohol 4 in 97% yield. The alcohol 4 was oxidized using Dess–Martin periodinane into the aldehyde, which was then subjected to a Wittig olefination with 4-benzyloxylbenzyl triphenylphosphonium bromide (3), which was prepared using a known procedure.6,7 In the presence of n-butyllithium in tetrahydrofuran, compound 11 was obtained as a mixture of E/Z isomers (3:2) in 87% yield (two steps). Finally, one-pot deprotection of the benzyl ether and reduction of two double-bonds in compound 11 (mixture of E/Z, 3:2) using hydrogenation in the presence of PtO₂ (98% yield), completed the total synthesis of (–)-6-epi-centrolobine (2). This unnatural analogue of (–)-centrolobine was fully characterized by IR, HRMS, ¹H and ¹³C NMR spectral data.

Figure 1 Structures of (–)-centrolobine and its 6-epimer

Scheme 1 Retrosynthetic approach to (–)-6-epi-centrolobine

SYNTHESIS 2008, No. 18, pp 2939–2942
Advanced online publication: 06.08.2008
DOI: 10.1055/s-2008-1067218; Art ID: Z11108SS
© Georg Thieme Verlag Stuttgart · New York
Yield: 0.67 g (78%); white solid; mp 39–41 °C; [a]D 25 = 6.2 (c 1.1, CHCl3).

IR (neat): 3464, 3305, 3038, 2929, 1739, 1606, 1511, 1242, 1128, 1067, 1024, 823 cm–1.


13C NMR (75 MHz, CDCl3): δ = 170.7, 170.3, 159.5, 131.6, 130.7, 129.3 (2 × C), 124.9, 113.7 (2 × C), 73.7, 68.8, 65.0, 62.8, 55.1, 20.9, 20.7. 

To a solution of diol 8 (0.5 g, 2.11 mmol) in anhydrous CH2Cl2 (10 mL) at 0 °C was added imidazole (0.29 g, 4.2 mmol) followed by TBSOCl (0.32 g, 2.11 mmol) in anhydrous CH2Cl2 (5 mL) and the reaction was allowed to warm to r.t. After stirring for 1.5 h, the reaction mixture was diluted with H2O (10 mL), the organic layer was separated and the aqueous layer was extracted with CH2Cl2 (10 mL). The combined organic layer was washed with brine (15 mL), dried over Na2SO4 and evaporated under reduced pressure. The residue obtained was purified by silica gel column chromatography (EtOAc–hexanes, 2:3) to afford 9.

Yield: 0.46 g (96%); white solid; mp 85–86 °C; [a]D 25 = 88.4 (c 1.3, CHCl3).

IR (neat): 3305, 3038, 2879, 1610, 1511, 1242, 1128, 1067, 1024, 823 cm–1.


Yield: 0.67 g (91%); viscous liquid; [a]D 25 = 58.0 (c 1, CHCl3).

Scheme 2

The synthesis of other analogues of (−)-centrolobine including its aza-analogue using different synthetic approaches is in progress. Upon completion of the synthesis, all these analogues will be tested for anti-leishmanial activity by comparison with the natural centrolobine and the results will be published later.

In conclusion, we have successfully achieved the asymmetric total synthesis of (−)-6-epi-centrolobine from commercially available tri-O-acetyl-D-glucal in nine steps with 49% overall yield.

All solvents and reagents were purified by standard techniques. Crude products were purified by column chromatography on silica gel (60–120 mesh). IR spectra were recorded on a Perkin–Elmer 683 spectrometer. Optical rotations were obtained on Jasco Dip 360 digital polarimeter. 1H and 13C NMR spectra were recorded in CDCl3 on a Varian Gemini 200 and Brucker Avance 300. Chemical shifts are reported in parts per million (ppm) with respect to internal TMS. Coupling constants (J) are quoted in Hz. Mass spectra were recorded on REC-21-11013 or Fannigan Mat 1210 double focusing mass spectrometers operating with a direct inlet system or LC/MSD Trap SL (Agilent Technologies).
IR (neat): 3443, 2926, 2855, 1609, 1510, 1249, 1081, 778 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.26 (d, J = 8.3 Hz, 2 H), 6.83 (d, J = 9.0 Hz, 2 H), 6.08–5.91 (m, 2 H), 5.19 (s, 1 H), 3.79 (s, 3 H), 3.76–3.68 (m, 1 H), 3.64–3.45 (m, 2 H), 1.96–1.86 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 159.4, 132.8, 129.6 (2 × C), 127.6, 125.4, 113.8 (2 × C), 73.8, 67.7, 65.5, 55.4, 26.5.


(25S,6S)-6-[4-(Benzyloxy)styryl]-2-(4-methoxyphenyl)-5,6-dihydro-2H-pyran (11)

To a solution of alcohol 4 (0.1 g, 0.45 mmol) under a nitrogen atmosphere was added anhydrous CH₂Cl₂ (5 mL) and Dess–Martin periodinane (0.19 g, 0.45 mmol) at 0 °C and the reaction was stirred at the same temperature for 30 min. The reaction mixture was quenched with aq sat. Na₂S₂O₄ (10 mL) and the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and evaporated in vacuo to obtain the crude product, which was used for the next step without purification.

To a solution of phosphonium salt 3 (1.24 g, 2.29 mmol) in THF (5 mL) at 0 °C was added n-BuLi (1.07 mL, 1.72 mmol, 1.6 M in hexanes). The solution turned orange-red and was stirred for 20 min at 0 °C. To this, a solution of the above prepared aldehyde (0.25 g, 1.15 mmol) in THF (5 mL) was added and the reaction mixture was stirred for 30 min at 0 °C. After the reaction was complete (monitored by TLC), the mixture was quenched with aq sat. NaHCO₃ (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated to dryness. Purification of the residue by silica gel column chromatography (EtOAc–hexanes, 3:1) gave 11.

Yield: 0.39 g (87.3%); a 2:3 mixture of E/Z isomers.

IR (neat): 3448, 2922, 2852, 1605, 1509, 1244, 1174, 1032, 838, 739 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.42–7.21 (m, 9 H), 6.92–6.76 (m, 4 H), 6.51 (d, J = 9.0 Hz, 1 H), 6.43 (d, J = 11.3 Hz, 1 H), 6.11–5.86 (m, 2 H), 5.24 (s, 1 H), 5.04 (s, 1 H), 4.95–4.41 (m, 1 H), 3.81 (s, 3 H), 2.23–2.14 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 159.6, 159.3, 158.5, 157.9, 137.1, 133.4, 133.1, 132.9, 130.5, 130.4, 130.2, 129.5, 128.7, 128.1, 127.9, 127.8, 127.6, 125.5, 125.3, 115.0, 114.4, 113.9, 113.8, 74.0, 73.7, 70.2, 69.9, 68.4, 64.1, 55.5, 31.5, 30.9.


(25S,6S)-6-[4-(Hydroxy)phenethyl]-2-(4-methoxyphenyl)-tetrahydro-2H-pyran (2)

To a solution of compound 11 (0.03 g, 0.07 mmol) in a mixture of EtOAc–MeOH (3:1, 3 mL) was added a catalytic amount of PTSA and the mixture was kept under a H₂ atmosphere (balloon) for 8 h at 27 °C. After completion of the reaction (monitored by TLC), the reaction mixture was filtered through a pad of celite and concentrated to dryness. Purification of the residue by silica gel column chromatography (EtOAc–hexanes, 1:5) afforded the desired product 2.

Yield: 0.22 g (98%); [α]₅⁰° +1.4 (c 0.4, CHCl₃).

IR (neat): 3441, 2923, 2853, 1613, 1512, 1244, 1033, 760 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.29 (d, J = 8.7 Hz, 2 H), 7.02 (d, J = 8.4 Hz, 2 H), 6.86 (d, J = 9.0 Hz, 2 H), 6.69 (d, J = 8.4 Hz, 2 H), 4.97 (br s, 1 H), 4.78 (t, J = 5.4 Hz, 1 H), 3.78 (s, 3 H), 3.76–3.72 (m, 1 H), 2.76–2.66 (m, 1 H), 2.57–2.47 (m, 1 H), 1.88–1.82 (m, 2 H), 1.75–1.57 (m, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.8, 153.8, 134.7, 134.5, 129.6 (2 × C), 128.0 (2 × C), 115.3 (2 × C), 72.0, 71.4, 55.5, 35.4, 31.5, 30.3, 30.1, 19.2.


Synthesis 2008, No. 18, 2893–2942 © Thieme Stuttgart · New York
Acknowledgment

PPM thanks the CSIR, New Delhi for financial assistance. CRR is thankful to Dr. J. S. Yadav, Director, Indian Institute of Chemical Technology, Hyderabad for his encouragement.

References


(7) 4-Benzoyloxybenzyl triphenylphosphonium bromide was prepared in two steps from commercially available p-benzyloxybenzyl alcohol using a known protocol, see ref. 4b.