A Practical Synthesis of the Kappa Opioid Receptor Selective Agonist (+)-5R,7S,8S-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxospiro[4,5]dec-8-yl]benzeneacetamide (U69,593)

Timothy McElroy,a James B. Thomas,a George A. Brine,a Hernán A. Navarro,a Jeffrey Deschamps,b F. Ivy Carroll*a

a Organic and Medicinal Chemistry, Research Triangle Institute, P. O. Box 12194, Research Triangle Park, NC 27709, USA
Fax +1(919)5418868; E-mail: fic@rti.org

b Laboratory for the Structure of Matter, Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375-5341, USA

Received 30 October 2007; revised 5 December 2007

Abstract: A novel approach to the synthesis of the kappa opioid receptor agonist U69,593 has been developed. This approach improves upon current literature methods by substituting stable and isolable cyclic sulfates for the unstable epoxides. The new approach provides access to gram quantities of the target compound and displays excellent control of the relative stereochemistry. The absolute stereochemistry as well as biological activity of the U69,593 produced by this new method was verified using X-ray crystal structure analysis and binding assays for the kappa opioid receptor.

Key words: U69,593, kappa opioid agonist, X-ray crystal structure, synthesis, receptors

Morphine has been the treatment of choice for relief of severe pain for decades, but its side-effect profile, including respiratory depression and addiction, has prompted researchers to seek alternative remedies.1 One approach to this problem has been the development of receptor subtype selective analgesics, reasoning that eliminating the action at multiple receptors might also eliminate unwanted side-effects. The arylacetamides first reported by Szmuszkovicz U50,488 (1), spiradoline (2), and (5R,7S,8S)-(+) N-methyl-2-phenyl-N-(7-pyrrolidin-1-yl)-1-oxospiro[4,5]dec-8-yl)acetamide (U69,593; 3) (Figure 1), are a class of opioid agonist compounds selective for the kappa opioid receptor.2,3 In animal models, these compounds were found to display potent analgesic activity, but unfortunately they also showed an unacceptable side-effect profile that included hallucinations and psychotomimesis.4 While these compounds were not a suitable replacement for morphine, they have provided valuable research tools to identify the role of the kappa opioid receptors in both normal and disease states.5

Recently we required gram quantities of 3, but found the synthesis provided in the patent literature to be both vague and provided the product in very low yield.6 We, therefore, undertook a study to develop an improved synthetic approach to the title compound. The retrosynthetic analysis in Scheme 1 shows the key synthetic transformations of the previously reported methods compared to the modified methods described herein. The reported synthesis involved the conversion of 1-oxospiro[4,5]dec-7-ene (6) to the resolved diamine 4 via the intermediate epoxides 5. In our hands, this method gave an intractable mixture of 4 in <1% yield from 6 with the handling of the epoxides 5 being particularly troublesome. In order to avoid this problem, we developed an alternative approach to 4 that did not proceed through this intermediate.

The synthesis began with (±)-1-oxospiro[4,5]dec-7-ene [(±)-6], which was available following the procedures described in the patent literature (Scheme 2).6 A Sharpless one-pot procedure7,8 provided a direct conversion of (±)-6 into a mixture of diols (±)-7a,b (74%, 1:4, cis/trans) with diol (±)-7b being the major product. This procedure was chosen because the K2O2O2(OH)4 is an easily handled crystalline solid. Without separation, the mixture of diols was converted into their corresponding stable and easily isolable cyclic sulfates (±)-8a,b in 77% yield. In stark contrast to our experience with the epoxides 5, the chromatographic separation of cyclic sulfates (±)-8a,b was easily conducted on a greater than 100 g scale. X-ray crystal structure analysis revealed that the spirocyclic oxygen and the oxygen atoms of the cyclic sulfate (±)-8b occupied opposite faces of the cyclohexyl scaffold (Figure 2), and thus, was used to synthesize (+)-3.

SYNTHESIS 2008, No. 6, pp 0943–0947
Advanced online publication: 18.02.2008
DOI: 10.1055/s-2008-1032185; Art ID: M08207SS
© Georg Thieme Verlag Stuttgart · New York
Our attempts to open the cyclic sulfates (±)-8b with various amines, proved to be unsuccessful. Eventually, we found that cyclic sulfates (±)-8b could be opened with sodium azide. Acid hydrolysis of the sulfate esters gave a mixture of azidoalcohols (±)-9 in 82% yield. Subsequent treatment of this mixture with triphenylphosphine in refluxing toluene provided the reactive aziridine intermediate (±)-10 in 71% yield on a 50 g scale. Opening of the aziridine (±)-10 with N-methylbenzylamine using ammonium chloride as the acid catalyst gave exclusively the diamine (±)-11 in 43% yield. Use of other acids to catalyze the reaction, including HCl and trifluoroacetic acid gave a mixture of regioisomers. The key intermediate (±)-4 was then prepared in 64% yield by cycloalkylation of (±)-11 with 1,4-dibromobutane and sodium carbonate. Removal of the benzyl group from racemic (±)-4 under catalytic hydrogenation conditions followed by resolution of the resulting racemic diamines [(±)-12] using di-p-toluoyl tartaric acid gave (+)-12 and (−)-12 in 24% yield. The absolute stereochemistry of (−)-12 was shown to have the 5S,7R,8R-stereochemistry by X-ray crystal structure analysis.

Figure 2 Structure of compound (±)-8b showing labeling of the nonhydrogen atoms. Displacement ellipsoids are at the 30% probability level.
analysis of the highly crystalline (–)-p-bromophenylacetyl derivative (13b, Figure 3 and Figure 4). By deduction, (+)-12 possessed the 5R,7S,8S-stereochemistry. Acylation of (+)- and (–)-12 with phenylacetic chloride gave the title compound (±)-(5R,7S,8S)-N-methyl-2-phenyl-N-(7-pyrrolidin-1-yl-1-oxospiro[4,5]dec-8-yl)acetamide [U69,593, (±)-3] and (–)-3. To confirm which of the compounds was the active isomer, both (±)- and (–)-3 isomers were assayed for their ability to compete with [3H] U69,593 in an opioid receptor binding assay. The result was that (±)-3 displaced the radioligand, whereas (–)-3 showed no inhibition of binding (Figure 5).

By deduction, speaking of the novel approach to the synthesis of the kappa opioid receptor agonist U69,593 has been developed. The new approach provides access to gram quantities of the target compound and displays excellent control of the relative stereochemistry. The absolute stereochemistry as well as biological activity of the U69,593 produced by this new method was verified using X-ray crystal structure analysis and binding assays for the kappa opioid receptor.

1H NMR and 13C NMR spectra were recorded at 300 and 125 MHz, respectively, using a Bruker Avance 300 spectrometer. Chemical shift data for the proton resonances were reported in parts per million (δ) relative to internal TMS (δ = 0.0). Optical rotations were measured on an AutoPol III polarimeter, purchased from Rudolf Research. Elemental analyses were performed by Atlantic Microlab, Norcross, GA. Analytical TLC was carried out on plates precoated with silica gel GHLF (250 µm thickness). TLC visualization was accomplished with a UV lamp, in an iodine chamber or PMA stain (5% phospholibdic acid in EtOH). All moisture sensitive reactions were performed under a positive pressure of nitrogen maintained by a direct line from a nitrogen source. Flash chromatography was performed on Silica gel 60 (EDM Chemical. particle size 0.040–0.063 mm; 230–400 mesh ASTM). 3-Phenyl-propan-1-ol was obtained from Aldrich Chemical Company. Petroleum ether (PE) refers to the fraction boiling in the range 38.5–54.5 °C.

(±)-1-Oxaspiro[4,5]dec-7-ene (6) Following the patent procedure, 3-phenylpropan-1-ol was treated with Na metal in liquid NH3 to obtain a mixture of starting material and 3-(cyclohexa-1,4-dienyl)propan-1-ol. Treatment of this mixture with p-TsOH at 120 °C under vacuum gave the title compound, which was distilled from the mixture to give 6 as a fragrant oil: bp 50–55 °C/5 mm Hg. 1H NMR (CDCl3, 300 MHz): δ = 1.72 (4 H, m), 1.76–2.21 (6 H, m), 3.88 (2 H, m), 5.60–5.68 (2 H, m).

Cyclic Sulfates (±)-8a and (±)-8b A mixture of hydroquinidine 1,4-phthalazinediyl diether ([DHQD]2PHAL) (8.0 g, 0.010 mol), K3Fe(CN)6 (1.0 kg, 3.89 mol), K2CO3 (430 g, 3.12 mol) and K2OsO4(OH)2 (1.1 g, 0.0038 mol) in H2O (4 L) and t-BuOH (4 L) was stirred at r.t. until a solution had formed. The solution was cooled in an ice bath (some precipitate formed) and (±)-1-oxaspiro[4,5]dec-7-ene [(±)-6, 142 g, 1.0 mol] was added in one portion. The resultant mixture was stirred for 5 h at low temperature, then for 12 h at r.t. After this time, Na2SO3 (500 g, 3.4 mol) was added, and the mixture was stirred an additional 30 min. The mixture was then extracted with EtOAc (2.00 L, then 4 × 1.00 L). The combined organic layers were dried (MgSO4) and evaporated to give a purple-brown oil [a mixture of diols (±)-7a,b]. Further purification was accomplished by flash chromatography on SiO2 utilizing EtOAc–PE (1:9) → EtOAc. The chromatography provided the diol mixture (1:4 cis/trans) as a white solid (132 g, 74%); mp 35–37 °C.
A mixture of aziridine (±)-10 (55 g, 0.36 mol), N-methylbenzylamine (250 mL, 1.90 mol), NHCl (2.0 g, 0.035 mol) and H₂O (250 mL) was heated under reflux for 14 h. After this time, the H₂O and excess N-methylbenzylamine were removed by vacuum distillation. The residual oil was distilled bulb-to-bulb to obtain 43.9 g (43%) of (±)-11 as a thick oil; bp 170 °C/5 mm Hg. This material was used without further characterization.

(±)-5S,7R,8S)-(±)-N-Benzyl-N-methyl-7-pyrrolidin-1-yl-1-o xo-spiro[4,5]decane-8-amine [(±)-11]

(±)-5S,7R,8S)-(±)-N-Benzyl-N-methyl-7-pyrrolidin-1-yl-1-o xo-spiro[4,5]decane-8-amine [(±)-11]

A mixture of aziridine (±)-10 (55 g, 0.36 mol), N-methylbenzylamine (250 mL, 1.90 mol), NHCl (2.0 g, 0.035 mol) and H₂O (250 mL) was heated under reflux for 14 h. After this time, the H₂O and excess N-methylbenzylamine were removed by vacuum distillation. The residual oil was distilled bulb-to-bulb to obtain 43.9 g (43%) of (±)-11 as a thick oil; bp 170 °C/5 mm Hg. This material was used without further characterization.

A solution of 4-bromophenylacetic acid (0.806 g, 0.0037 mol) in CH₂Cl₂ (5 mL) was treated with o xoacetyl chloride (2 mL of 2 M solution) and one drop of DMF was added. The mixture was stirred at r.t. for 3 h and concentrated. The residue was dissolved in CH₂Cl₂ (10 mL) and added dropwise to (±)-12 (0.10 g, 0.0042 mol) in CH₂Cl₂ (5 mL) cooled in an ice bath. After this addition, the mixture was stirred under reflux for 12 h, cooled to r.t., and the toluene was removed under vacuum. Vacuum distillation of the residue (oil bath: 150 °C) yielded 55.4 g (71%) of the title compound; bp 89–95 °C/5 mm Hg.

1H NMR (CDCl₃): δ = 1.33–1.89 (11 H, m), 3.34–4.04 (4 H, m).

A fumarate salt was prepared for elemental analysis.


The diol mixture was divided into two equal batches (66 g, 0.38 mol). Each batch was dissolved in CH₂Cl₂ (500 mL) and cooled in an ice bath. A solution of SOCl₂ (30 mL, 0.42 mol) in CH₂Cl₂ (300 mL) was added dropwise over 2 h to each chilled solution of the diol mixture. Following the addition, the ice bath was removed and the resultant mixture stirred for 3 h at r.t. The solvent and excess SOCl₂ were then evaporated. Aq sat. K₂CO₃ (300 mL) was added to each batch and each mixture extracted with EtOAc (3 × 100 mL). The combined organic extracts from both batches were dried (MgSO₄) and evaporated to give a thick oil (139 g, 83%) that by 1H NMR contained two components. This mixture was used in the next reaction without further purification.

A solution of the above mixture (139 g, 0.63 mol) in MeCN (5.00 L) was treated with NaOH (254 g, 0.90 mol) and RuCl₃·3H₂O (0.55 g, 0.0023 mol), followed by H₂O (1.00 L). (It is important to add the H₂O last to avoid clumping of the NaOH.) The resultant heterogeneous mixture was stirred for 5 h at r.t., then diluted with Et₂O (6.00 L) and H₂O (1.00 L). After separation of the layers, the aqueous layer was washed with CH₂Cl₂ (100 mL). The combined organic extracts from both batches were dried (MgSO₄) and evaporated to give 145 g of a brown oil containing a mixture of cyclic sulfates (±)-8a·b. The mixture was chromatographed on SiO₂ utilizing CHCl₃–MeOH–concd NH₄OH (80:18:2) to obtain 33 g (64%) of the title compound as a clear oil.

(±)-5S,7R,8S)-(±)-N-Methyl-7-pyrrolidin-1-yl-1-o xo-spiro[4,5]decane-8-amine [(±)-12]

A mixture of intermediate (±)-4 (33 g, 0.100 mol) and 10% Pd/C (30 g) in MeOH (300 mL) was hydrogenated at 50 psig H₂ for 36 h. The mixture was filtered through a Celite pad and washed with MeOH (2 × 200 mL). The combined filtrates and washings were concentrated to yield 23.9 g (99%) of (±)-12 as a white solid.

1H NMR (CDCl₃): δ = 0.89–2.18 (18 H, overlapping m), 2.23 (3 H, s, NCH₃), 2.25–2.80 (2 H, m), 3.73 (2 H, q, J = 3 Hz).

The resolution of (±)-12 was achieved utilizing di-p-toluoyl-l-tartraric acid according to the literature procedure. The resolution afforded 5.76 g of (±)-12 as a freebase. The other enantiomer (–)-12 was isolated as well using di-p-toluoyl-d-tartraric acid. The ee of these samples was found to be >97% according to the method of Pickle and Hoover.®

(5S,7R,8S)-(–)-2-(4-Bromophenyl)-N-methyl-N-(7-pyrrolidin-1-yl-1-oxo-spiro[4,5]dec-8-yl)acetamide [(–)-13b]

A solution of 4-bromophenylacetic acid (0.806 g, 0.0037 mol) in CH₂Cl₂ (5 mL) was treated with oxalyl chloride (2 mL of 2 M solution in CH₂Cl₂) and one drop of DMF was added. The mixture was stirred at r.t. for 3 h and concentrated. The residue was dissolved in CH₂Cl₂ (10 mL) and added dropwise to (–)-12 (0.10 g, 0.0042 mol) in CH₂Cl₂ (5 mL) cooled in an ice bath. Following this addition, the mixture was stirred under reflux for 16 h at r.t. The mixture was diluted with 50% NH₄OH (10 mL), the layers separated, and the aqueous layer extracted with CH₂Cl₂ (500 mL). The organic extracts were combined, dried (Na₂SO₄), and concentrated. The resultant residue was purified by column chromatography on SiO₂ utilizing PE–EtOAc–Et₂O–K₂CO₃ (67:30:3) to obtain the title compound as a white solid. The compound was then crystallized from Et₂O–hexane to obtain 4.4 g (11%) of the title compound as white needles; mp 122–123 °C.

Anal. Calcld for C₂₁H₂₁BrN₃O₅: C, 60.69; H, 7.18; N, 6.43; Br, 18.35. Found: C, 60.68; H, 7.21; N, 6.44; Br, 18.35.

(5R,7S,8R)-(+)–Methyl-2-phenyl-N-(7-pyrrolidin-1-yl-1-oxo-spiro[4,5]dec-8-yl)acetamide [(+)–3]

A mixture of intermediate (+)-12 (5.70 g, 0.021 mol) in CH₂Cl₂ (500 mL) was cooled in an ice bath. Phenylacetyl chloride (5.25 mL, 0.038 mol) was added dropwise. Following this addition, the mixture was stirred 16 h at r.t. The mixture was diluted with 50% NH₄OH (100 mL). The layers were separated, and the aqueous layer extract-
ed with CH₂Cl₂ (500 mL). The organic extracts were combined, dried (Na₂SO₄), and concentrated. The resultant residue was purified by column chromatography on SiO₂ utilizing PE–EtOAc–Et₃N (50:45:5) to obtain 6.5 g (91%) of the title compound as a white solid; mp 120–123 °C; [α]D₀ +7.5 (c 1.2, MeOH); Rf = 0.50 [single spot on SiO₂ utilizing Et₂O–Et₃N (9:1)].

¹H NMR (CDCl₃): δ = 1.00–1.96 (14 H, overlapping m), 2.45–2.78 (6 H, overlapping m), 2.80 (3 H, s, NCH₃), 3.74–3.84 (4 H, m), 7.08–7.49 (5 H, m, ArH).

Anal. Calcd for C₂₂H₃₂N₂O₂: C, 74.12; H, 9.05; N, 7.86. Found: C, 73.88; H, 9.04; N, 7.68.

Acknowledgment
This work was supported by the National Institute on Drug Abuse on project DA-3-7736 and DA6002. The opioid receptor binding assays were conducted on NIDA grant DA09045.

References