A General Route to 4-C-Substituted Pyrimidine Nucleosides

Ulrich Hennecke, David Kuch, Thomas Carell*

Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus F, 81377 München, Germany
Fax +49(89)218077756; E-mail: thomas.carell@cup.uni-muenchen.de

Received 2 November 2006; revised 21 December 2006

SYNTHESIS 2007, No. 6, pp 0929–0935
Advanced online publication: 13.02.2007
© Georg Thieme Verlag Stuttgart · New York

Abstract: Palladium-catalyzed cross-coupling reactions of tin and zinc nucleophiles with arylsulfonates of pyrimidine nucleosides have been achieved to give a wide range of 4-C-substituted pyrimidine nucleosides. This method also allows the construction of pyrimidine-pyrimidinone dinucleosides, containing the carbon skeleton of the (6-4) DNA photo lesion.

Key words: cross-coupling, nucleosides, palladium, pyrimidines, (6-4) lesion

Nucleosides and nucleoside analogues belong to the most important classes of antiviral and antitumor drugs. Even today, around 30 years after the discovery of the first successful anti-viral drug, acyclovir, plenty of new nucleoside derivatives, many of them pyrimidine derivatives, are synthesized and tested.1,2 Compared to other substituted pyrimidine nucleosides, C4-substituted pyrimidines, especially 2-pyrimidinones, are quite rare in the literature. In fact, a general method for their synthesis from a common precursor is missing. Most of the known compounds have been prepared by glycosylation of the preassembled heterocycle with a suitable glycosyl donor.3,4 2-Pyrimidinone nucleosides are not only of pharmacological interest, but they occur also in nature, for example as part of the carbon framework of the (6-4) DNA photo lesion, which is one of the major mutagenic and cytotoxic lesions known in DNA.5

Both 4-N- and 4-O-substituted pyrimidines can be easily prepared from uridines by conversion of the O4 into a suitable leaving group (for example a chloride or an arylsulfonate) and substitution of this leaving group by a nitrogen or oxygen nucleophile.6,7 For carbon nucleophiles, however, this reaction is limited to extremely nucleophilic compounds such as malonic diesters.8 Organometallic nucleophiles like organolithium or organocopper compounds react only sluggishly or, like alkyl Grignard reagents, add preferentially to the 6-position without substituting the leaving group.9 We anticipated that these problems can be overcome by using palladium catalysis, which is of increasing importance in contemporary purine nucleoside chemistry.10–14 Two examples for the synthesis of 4-carbon substituted pyrimidine nucleosides using palladium-catalyzed cross-coupling are known, but are not generally applicable, limited to alkynyl nucleophiles (Sonogashira coupling), or low yielding.15,16 As starting ma-

Figure 1 Structures of the starting materials used

Scheme 1 General reaction scheme; M = SnBu3, ZnCl; R5 = alkyl, alkenyl, aryl, heteroaryl

Material we chose the 2,4,6-triisopropylbenzenesulfonates of various uridine derivatives such as 1, 2, 3 (Figure 1 and Scheme 1). These compounds are conveniently prepared in high yields from the corresponding uridine nucleosides and can be easily purified by column chromatography. The compounds are stable and can be stored at –20 °C for months.8 In contrast, the corresponding chlorides were, at least in our hands, unstable. In addition, the methods used for their preparation (using SOCl₂ for example) are generally not compatible with many of the typically used protecting groups of the sugar hydroxyl groups.
hydrolysis created problems. The reaction conditions proved to be quite generally applicable, as under these conditions other tin nucleophiles and the arylsulfonates 2 and 3 could be applied equally well (Table 1). Alkynyl, alkenyl and heteroaromatic tin nucleophiles could be used and, usually, the desired products were obtained after column chromatography in high purity and good yields.

Quite surprising was the reaction of the acrylic acid nucleophiles. The reaction of (E)- and (Z)-3-tributylstannylacrylic acid tert-butyl ester (entries 3 and 4) gave exclusively the same product featuring the E-configured double bond. Interestingly the reaction of the E-nucleophile was slow and only the use of 2.5 equivalents of the tin compound gave acceptable yields. To investigate the influence of the bulky tert-butyl ester, the reaction was carried out with (E)- and (Z)-3-tributylstannylacrylic acid methyl ester (entries 5 and 6). Again, the product with the E-configured double bond was usually the only product. In one or two cases, however, an E/Z-product mixture was isolated from the reaction when the Z-configured nucleophile 7 was used. Upon standing at room temperature, the chloroform solution of Z-configured product isomerized within two days to the E-compound. This possibly explains the outcome of our reactions: The Stille coupling proceeds, as it is generally the case, with retention of configuration at the double bond. Afterwards the isomerization from the Z- to the E-double bond geometry takes place in a second step by a yet unknown mechanism.

After the successful application of the tin nucleophiles, we also investigated the reaction of the arylsulfonates with zinc organometallics (Negishi coupling, Table 2). Phenylzinc chloride (derived from phenyl-Grignard and zinc chloride) reacted with 1 under conditions fairly similar to the Stille couplings above [Pd(PPh₃)₄, THF] even at room temperature to give the 4-phenyl-2-pyrimidinone nucleoside 18 in good yield (Table 2, entry 1). The ease of this reaction prompted us to investigate the cross-coupling of the sterically more demanding thymidine nucleoside 16. To our surprise the reaction proceeded also smoothly but required longer reaction times (3 d, entry 2). In this case, the application of 2.5 mol% Pd(dppf)Cl₂ as catalyst was superior to Pd(PPh₃)₄, as it allowed easier removal of the catalyst from the product. Using this protocol, even sp³-sp² cross-couplings were possible. Dimethylzinc or n-butylinzinc chloride could be coupled using Pd(PPh₃)₄. Here, however, the yields were slightly lower. The catalyst loading for the reaction with dimethylzinc could be as low as 0.5% without any loss of yield. The use of Pd(dppf)Cl₂, a catalyst known to suppress the problematic β-hydride elimination, for the reaction with n-butylinzinc chloride did not improve the yield.

As our method works under very mild conditions, we prepared the highly functionalized 6-tributylstannyluridine nucleoside 10 (Table 1, entry 7, two steps from uridine). This stannylated nucleoside was anticipated to function as a precursor for the dihydropyrimidine part of the (6-4) DNA lesion on the way towards the first total synthesis of the lesion. Coupling of this compound to arylsulfonate 2

Table 1 Stille-Type Cross Coupling of 4-(2,4,6-Triisopropylbenzenesulfonate)pyrimidine Nucleosides¹

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>48b</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>71b</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>64c</td>
</tr>
</tbody>
</table>

¹ Conditions: arylsulfonate (1 equiv), tin nucleophile (1.5 equiv), Cul (20 mol%), Pd(PPh₃)₄ (10 mol%), DMF, 24 h, 55 °C. For R¹–R⁴, see Figure 1.

b 2.5 equiv of tin nucleophile was used.

c 1 equiv of tin nucleophile was used.
Table 2 Negishi-Type Cross-Coupling of 4-(2,4,6-Triisopropylbenzenesulfonyl)pyrimidine Nucleosides

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>ZnBr</td>
<td>17</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>TBSO<sub>2</sub>O-16</td>
<td>ZnBr</td>
<td>17</td>
<td>68<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Me<sub>2</sub>Zn</td>
<td>17</td>
<td>61<sup>c</sup></td>
</tr>
<tr>
<td>4</td>
<td>BuZnCl</td>
<td></td>
<td>17</td>
<td>48</td>
</tr>
</tbody>
</table>

*Conditions: arylsulfonate (1 equiv), zinc nucleophile (2 equiv), Pd(PPh₃)₄ (10 mol%), THF, r.t. Ar = 2,4,6-trisopropylbenzene. For R¹ and R², see Figure 1.
* 0.5 mol% catalyst was used.
* 68^b mol% yield.
* 61^c mol% yield.

Initial deprotection experiments were performed with the compounds 12 (TBS-protected) 13 (toluoyl-protected). Compound 12 could be deprotected using HF/pyridine to give the unprotected nucleoside, 1-(2'-deoxyribofuranosyl)-4-thienyl-2-(1H)-pyrimidinone (22). The purification of the highly polar product, however, was as expected difficult and needs further optimization (isolated yield 41%). Deprotection of compound 13 is an especially difficult task due to the highly electrophilic double bond bearing two electron-withdrawing substituents. Nevertheless deprotection was possible in our hands using sodium methoxide and short reaction times. These conditions gave the unprotected nucleoside, (E)-3-[1-(2'-deoxyribofuranosyl)-2-(1H)-pyrimidin-4-yl]acrylic acid tert-butyl ester (23) as the major product (isolated yield 38%). Minor side products were formed due to Michael-type addition to the double bond.

In summary, we have developed a new method for the synthesis of 4-carbon substituted uridines, capable of introducing sp², sp²- and sp³-carbon substituents. This method will provide an expedient route towards the assembly of the carbon framework of the (6-4) DNA lesion.

All reactions were carried out in Schlenk glassware under an inert gas atmosphere. Reactions were monitored by TLC. Yields refer to isolated yields of analytically pure compounds. Pre-coated silica gel 60F₂₅₄ (Merck) was used for TLC. silica gel 60 (0.040–0.063 mm, Merck) was used for column chromatography. NMR spectra were recorded on Varian or Bruker NMR spectrometers (300, 400 or 600 MHz). Mass spectra were measured on a Finnigan MAT 95 Q (FAB) or a Finnigan LTQ-FT (ESI). IR spectroscopy was performed on a PerkinElmer FT-IR spectrum 100 or a PerkinElmer Spectrum BX. The following compounds were prepared by literature procedures: 2,3',5'-O-isopropylidene-5'-O-trityluridine, 2',3'-deoxy-3',5'-bis-O-(tert-butylidemethylisilyl)-4-O-(2,4,6-trisopropylbenzene)sulfonyl]uridine (2), 2',3'-O-(tert-butylidemethylsilyl)-4-O-(2,4,6-trisopropylbenzene)sulfonyl]thymidine (16). 2',5'-deoxy-3',5'-O-(1,1,3,3-tetraisopropyl-1,3-disioxanediyl)uridine, (E)- and (Z)-3-tritylstannylacrylic acid methyl ester (8 and 9) and (E)- and (Z)-3-tritylstannylacrylic acid tert-butyl ester (6 and 7).
2'-Deoxy-3',5'-bis-O-(4-tolyl)oxy)-4-O-[2,4,6-triisopropylbenzene]sulfonyl]uridine (3)

2'-Deoxy-3',5'-bis-O-(4-tolyl)oxy)uridine (300 mg, 0.65 mmol) was dissolved in THF (20 mL). NaH (60% suspension in mineral oil, 129 mg, 3.23 mmol) was carefully added and the resulting suspension was stirred for 1 h at rt. Triisopropylbenzene sulfonyl chloride (302 mg, 1.29 mmol) was added and the suspension was stirred for 14 h at rt. Aq sat. NH₄Cl (30 mL) was added and the aqueous phase was extracted with EtOAc (2 × 30 mL). The combined organic phases were washed with brine (40 mL), dried (MgSO₄), filtered and the solvent was removed under vacuum. The crude product was purified by flash chromatography (silica gel, isohexanes–EtOAc, 4:1) to give the product (290 mg, 86%) as a white, amorphous solid.

IR (KBr): 2962, 2871, 1717, 1680, 1492, 1448, 1383, 1374, 1314, 1271, 1213, 1158, 1144, 1078, 910, 876, 791, 732, 707, 632, 541 cm⁻¹.

Stille-Type Cross-Coupling: General Procedure

Arylsulfonyl (1 equiv), tin reagent (1.5 equiv), CuI (0.2 eqiv) and (Ph₃P)₄Pd (0.1 equiv) were dissolved in DMF (1 mL per 0.1 mmol arylsulfonylate). The solution was stirred 55 °C for 24 h. After cooling to r.t., the solvent was removed under vacuum and the crude product was purified by flash chromatography (silica gel, isohexanes–EtOAc, 1:1).

1-(2',3',5'-O-isopropylidene-5'-O-tritylribofuranosyl)-4-(phenylethynyl)-2-(1H)-pyrimidinone (11)

The standard procedure was followed using arylsulfonylone 1 (150 mg, 0.19 mmol), (phenylethynyl)tributyltin (98 µL, 0.28 mmol), CuI (8 mg, 0.04 mmol) and (Ph₃P)₄Pd (23 mg, 0.02 mmol) affording the product (74 mg, 64%) as a colorless oil; Rₛ = 0.3 (isohexanes–EtOAc, 1:1).

IR (film): 3086, 3060, 2988, 2931, 2871, 2217s, 1661, 1611, 1505, 1492, 1448, 1383, 1374, 1314, 1271, 1213, 1158, 1144, 1078, 910, 876, 791, 732, 707, 632, 541 cm⁻¹.

and (Ph3P)4Pd (42 mg, 0.04 mmol) afforded the product (136 mg, acrylic acid methyl ester (8 m, 1 H, H-3), 7.02 (d, J = 12.1 Hz, 1 H, H-4), 7.19–7.54 (m, 5 H, Harom, CH=CH), 7.78–7.82 (m, 2 H arom), 7.93–7.98 (m, 2 H arom), 8.13 (d, J = 7.2 Hz, 1 H, H-6).

1H NMR (600 MHz, CDC13): δ = 1.52 (s, 9 H, t-CH3), 2.27–2.33 (m, 1 H, H-2), 2.40 (s, 3 H, CH3), 2.44 (s, 3 H, CH3), 3.19–3.24 (m, 1 H, H-2B1), 4.66 (dd, J = 12.0, 3.0 Hz, 1 H, H-5A), 4.67–4.70 (m, 1 H, H-4), 4.79 (dd, J = 12.0, 1.8 Hz, 1 H, H-5B), 5.59–5.62 (m, 1 H, H-3), 6.30 (d, J = 7.2 Hz, 1 H, H-5), 6.33–6.36 (m, 1 H, H-1¢), 6.85 (d, J = 16.2 Hz, 1 H, CH=CH), 7.19–7.30 (m, 5 H, Harom, CH=CH), 7.78–7.82 (m, 2 H arom), 7.93–7.98 (m, 2 H arom), 8.13 (d, J = 7.2 Hz, 1 H, H-6).

1H NMR (600 MHz, CDCl3): δ = 0.08 (s, 3 H, Si(CH3), 0.11 (s, 3 H, Si(CH3), 0.12 (s, 3 H, Si(CH3), 0.90 (s, 9 H, t-CH3), 0.92 (s, 9 H, t-CH3), 0.97–1.38 [m, 28 H, (CH3)2], 2.20–2.26 (m, 1 H, H-2B2Py), 2.36–2.42 (m, 1 H, H-2A2Py), 2.63–2.69 (m, 1 H, H-2B2Py), 2.93–2.99 (m, 1 H, H-2B1Py), 3.69–3.73 (m, 1 H, H-1BPy), 3.78–3.82 (m, 1 H, H-5A2Py), 3.93–3.97 (m, 2 H, H-5B2Py), 3.98–4.02 (m, 1 H, H-5B1Py), 4.02–4.05 (m, 1 H, H-5B2Py), 4.39–4.44 (m, 1 H, H-3BPy), 4.92–4.98 (m, 1 H, H-3B1Py), 5.67 (dd, J = 9.0, 3.0 Hz, 1 H, H1Py), 5.79 (s, 1 H, H-5B1Py), 6.18–6.22 (m, 1 H, H-1BPy), 6.54 (d, J = 6.9 Hz, 1 H, H-5B2Py), 8.15 (s, 1 H, NH), 8.69 (d, J = 6.9 Hz, 1 H, H-6B2Py).

13C NMR (150 MHz, CDCl3): δ = –5.5 (2 C), –4.9, –4.5, 12.5, 12.6, 13.2, 13.6, 17.0 (2 C), 17.1, 17.3, 17.4 (2 C), 17.5, 17.6, 17.9, 18.3, 25.7 (3 C), 25.9 (3 C), 40.2, 42.4, 61.7, 64.1, 70.0, 73.6, 86.4, 87.4, 88.0, 88.4, 102.7, 104.4, 145.8, 149.1, 152.1, 154.1, 161.5, 167.0.

Negishi-Type Cross-Coupling Reactions; General Procedure
ZnCl2 (1 M in THF, 2.2 equiv) was dissolved in THF (0.5 ml, per 0.1 mmol arylsulfonate) and the solution was cooled to 0 °C. A lithium or magnesium organometallic compound in THF (2 equiv) was added dropwise and the solution was stirred for 1 h at 0 °C. CuI (0.1 mmol arylsulfonate) and the arylsulfonate (1 equiv in 0.5 ml THF) were added and the resulting solution was stirred for 18 h at rt. Aq sat. NH4Cl (20 mL) and EtOAc (20 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (2 × 20 ml). The combined organic phases were washed with brine (40 mL), dried (MgSO4), filtered and the solvent was removed under vacuum. The crude product was purified by flash chromatography.

1-(2-[3-O-Isopropylidene-5′-O-tritylribosfuranosyl]-4-phenyl-2-(1H)-pyrimidinone (18)
The standard procedure was followed using arylsulfonate 1 (141 mg, 0.18 mmol), phenylmagnesium bromide (1 M in THF, 0.38 ml, 0.38 mmol), ZnCl2 solution (0.4 ml, 0.4 mmol) and (Ph3P)2Pd (23 mg, 0.02 mmol) affording the crude product. The crude product was purified by flash chromatography (silica gel, isooctane–EtOAc, 1:3) to give the title compound (77 mg, 74%) as a colorless oil; Rf = 0.71 (isooctane–EtOAc, 1:3).

IR (Film): 3059, 2986, 2934, 2871, 1674, 1717, 1549, 1494, 1449, 1382, 1374, 1272, 1214, 1158, 1120, 1079, 874, 765, 706, 632 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.99–4.04 (m, 2 H, H-5), 4.95 (dd, J = 6.6 Hz, 1 H, H-5), 5.59–5.62 (m, 1 H, H-3), 6.03 (d, J = 15.9 Hz, 1 H, CH=CH), 7.39 (d, J = 15.9 Hz 1 H, CH=CH), 8.53 (d, J = 6.6 Hz, 1 H, H-6).

IR (ATR): 2950, 2930, 2865, 1672, 1518, 1463, 1387, 1364, 1279, 1263, 1091, 1029, 916, 884, 833, 776, 692 cm–1.

Synthesis 2007, No. 6, 929–935 © Thieme Stuttgart · New York
HRMS-FAB (+); m/z [M + Na]+ calcd for C_{13}H_{16}N_{2}O_{5}; found: 598.4425.

1-(2'-Deoxy-3',5'-bis-O-(tert-butylidemethylsilyl)ribofuranosyl)-4-phenyl-5-methyl-2-(1H)-pyrimidine (19)

The standard general procedure was followed except that 2.5 mol% of Pd(dppf)Cl_2 was used as catalyst with an extended reaction time of 3 d. Arylsulfonate 3 (d, Arylsulfonate 3 C_4H_9), 0.90 (s, 9 H, C_6H_5), 8.06 (s, 1 H, H-6).

HRMS-ESI (+): m/z [M + H]+ calcd for C_{13}H_{15}N_{2}O_{4}S: 295.0747; found: 295.0745.

(E)-3-[1-(2'-Deoxy-3',5'-bis-O-(tert-butylidemethylsilyl)ribofuranosyl)-4-buty1-2(1H)-pyrimidine-4-yl]acrylic Acid tert-Butyl Ester (23)

Compound 12 (55 mg, 0.1 mmol) was dissolved in EtOAc (2 mL) and treated with HF/pyridine complex (70 mol%). The solution was shaken for 14 h at r.t. Methoxytrimethylsilane (200 μL) was added and the solution was shaken for another 2 h at r.t. The solvent was removed under vacuum and the crude product was purified by flash chromatography (silica gel, CH_2Cl_2–MeOH, 9:1) to give the title compound (12 mg, 41% as a white, amorphous solid; R_f = 0.43 (CH_2Cl_2–MeOH, 9:1).

HRMS-ESI (+); m/z [M + HNEt_3]+ calcd for C_{31}H_{64}N_{3}O_{4}Si_{2}: 598.4430; found: 598.4425.

1-(2'-Deoxyribofuranosyl)-4-thienyl-2-(1H)-pyrimidine (22)

The standard general procedure was followed using arylsulfonate 12 (55 mg, 0.1 mmol) in EtOAc (2 mL) affording the crude product (121 mg, 61%) as a slightly yellow oil; R_f = 0.30 (isohexanes–EtOAc, 1:1).

HRMS-ESI (+); m/z [M + Na]+ calcd for C_{15}H_{18}N_{3}O_{3}Si: 455.2756; found: 455.2759.

1-[2'-Deoxy-3',5'-bis-O-(tert-butylidemethylsilyl)ribofuranosyl]-4-buty1-2(1H)-pyrimidine (21)

The standard procedure was followed except using arylsulfonate 2 (144 mg, 0.2 mmol), n-But Li (1.6 M in hexanes, 0.4 mL, 0.4 mmol), ZnCl_2 solution (0.44 mL, 0.44 mmol) and (Ph,P)_2Pd (23 mg, 0.02 mmol) affording the crude product. The crude product was purified by flash chromatography (silica gel, isohexanes–EtOAc, 2:1, later 1:1) to give the product (48 mg, 48%) as a colorless oil; R_f = 0.66 (isohexanes–EtOAc, 1:1).

IR (ATR): 2954, 2929, 2857, 1650, 1620, 1520, 1462, 1390, 1361, 1276, 1252, 1191, 1110, 1076, 1029, 1006, 985, 833, 853, 776, 671 cm\(^{-1}\).

1H NMR (300 MHz, CDCl_3): δ = 0.07 (s, 3 H, SiCH_3), 0.08 (s, 3 H, SiCH_3), 0.11 (s, 3 H, SiCH_3), 0.12 (s, 3 H, SiCH_3), 0.89 (s, 9 H, t-C_6H_5), 0.92 (s, 9 H, t-C_6H_5), 2.12 (s, 3 H, 5-CH_2), 2.04–2.16 (m, 1 H, H-2'A), 2.65 (ddd, J = 13.5, 6.2, 3.9 Hz, 1 H, H-2'B), 3.80 (dd, J = 11.5, 2.6 Hz, 1 H, 1'H-5'A), 3.95 (ddd, J = 11.5, 2.6, 5.8 Hz, 1 H, 1'H-5'B), 4.00–4.05 (m, 1 H, H-4'), 4.43–4.37 (m, 1 H, H-3'), 6.19 (t, J = 6.3 Hz, H-1'), 7.40–7.46 (m, 3 H, C_6H_5), 7.57–7.61 (m, 2 H, C_6H_5), 8.06 (s, 1 H, H-6).
Acknowledgment

The authors thank the Deutsche Forschungsgemeinschaft, the Volkswagen Foundation and the Fonds der Chemischen Industrie for generous financial support. We thank Chris Kuffer for preparative assistance and Dr. Glenn Burley for carefully reading the manuscript.

References