A Practical Synthesis of Optically Active \(\alpha \)-Substituted Ketones in High Enantiomeric Excess

Darunee Soorukram, Paul Knochel*

Ludwig-Maximilians-Universität München, Department Chemie und Biochemie, Butenandtstraße 5-13, Haus F, 81377 München, Germany
Fax +49(89)218077680; E-mail: paul.knochel@cup.uni-muenchen.de

Received 19 October 2006; revised 3 November 2006

Abstract: A highly enantioselective synthesis of optically active \(\alpha \)-substituted ketones can be achieved by using a reaction sequence involving a stereoselective anti-\(\text{SN}_2^\text{¢} \)-allylic substitution in the presence of \(\text{CuCN} \cdot 2\text{LiCl} \), followed by the oxidation of the intermediate cycloalkenyllithium species using \(\text{B(OMe)}_3/\text{NaBO}_3 \cdot 4\text{H}_2\text{O} \). The substitution reaction proceeds with a perfect transfer of chirality.

Key words: allylic substitution, organozinc, organocopper, chiral \(\alpha \)-substituted ketones

Optically active \(\alpha \)-substituted ketones are versatile building blocks for the synthesis of natural products. A number of methods for the synthesis of this class of compounds have been reported, for example stereoselective \(\alpha \)-alkylation and enantioselective protonation of enolates and enols. For the performance of alkylation reactions of ketone enolates, the regio- and stereoselectivity of enolate formation is essential for the overall selectivity of the reaction. The regioselectivity of ketone deprotonation was extensively investigated.

Here, we describe a highly regio- and enantioselective synthesis of optically active \(\alpha \)-substituted ketones using a reaction sequence involving a stereoselective anti-\(\text{SN}_2^\text{¢} \)-allylic substitution of 2-iodocycloallylic benzoates or phosphates in the presence of \(\text{CuCN} \cdot 2\text{LiCl} \) followed by the oxidation of an intermediate cycloalkenyllithium species using \(\text{B(OMe)}_3/\text{NaBO}_3 \cdot 4\text{H}_2\text{O} \). A high enantiomeric purity of \(\alpha \)-substituted ketones could be obtained via these highly stereoselective anti-\(\text{SN}_2^\text{¢} \)-allylic substitutions.

Thus, the anti-\(\text{SN}_2^\text{¢} \)-allylic substitution reaction between the chiral allylic phosphate \(1 \) (98% ee) and dipentylzinc \(\text{Procedure 1} \) provided the desired anti-\(\text{SN}_2^\text{¢} \) product cyclohexenyl iodide \(2 \) in 80% yield with 97% ee (Scheme 1). Similarly, treatment of the chiral allylic pentfluorobenzoate \(3 \) (98% ee) with cyclohexylzinc iodide gave the desired anti-\(\text{SN}_2^\text{¢} \) product cycloheptenyl iodide \(4 \) in 87% yield and 98% ee \(\text{(Procedure 2)} \). Cycloalkenyl iodides \(2 \) and \(4 \) were converted into ketones \(5 \) and \(6 \), respectively, using a one-pot oxidation reaction \(\text{(Procedure 3)} \).

The method has a broad scope for the preparation of a variety of chiral \(\alpha \)-substituted cyclohexanones and cycloheptanones in high enantiomeric purity. Furthermore, this procedure can be applied to five-membered rings as well. Thus, the stereoselective anti-\(\text{SN}_2^\text{¢} \) substitution of
the allylic phosphate 7 with dipentyldiazine gave the chiral
cyclopentenyl iodide 8 in 96% yield with 94% ee (Scheme 2). Using a one-pot oxidation reaction, the
cyclopentanone (S)-9 was obtained in 86% overall yield
with 81% ee starting from the allylic phosphate 7. This
optically pure cyclopentanone and its enantiomer are useful
perfumes with a jasmine-like odor. They are also valu-
able precursors for the synthesis of tetrahydro-6-pentyl-
2H-perfumes with a jasmine-like odor. They are also valu-
able precursors for the synthesis of tetrahydro-6-pentyl-
2H-perfumes with a jasmine-like odor.

Interestingly, this method also allows a practical regiose-
lective synthesis of ketones bearing a quaternary center at
the α-position to the carbonyl group with high enantiose-
lectivity (Scheme 3). Thus, the reaction of the pentaflu-
oroobenzoate 10 with dipentyldiazine (2.4 equiv) and CuCN·2LiCl solut.
ion (1.0 M in THF, 0.56 mL, 0.56 mmol, 1.12 equiv)
and NMP (1.30 mL) and the mixture was cooled to –30 °C. CuCN·2LiCl (1.2 equiv) in THF for four hours at 25 °C
provided the anti-Sn2¢ substitution product 11 in 93% yield and 95% ee. Transmetalation of the resulting cy-
claokenyllithium species with B(OMe)3 and further oxi-
dation using NaBO3·4H2O afforded the chiral ketone
12 in 70% yield and 95% ee.²

In summary, we have developed a short, highly enantiose-
lactic synthetic sequence allowing the preparation of various chiral ketones with an α-stereogenic center.

(S)-1-Iodo-5-pentylcyclohex-1-ene (8)
[α]D20 = +13 (c = 0.31, CH2Cl2).

Synthesis of Optically Active α-Substituted Ketones

Scheme 2

Scheme 3
A flame-dried round-bottomed flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with a CuCN·2LiCl solution (1.0 M in THF, 2.0 mL, 2.0 mmol, 2.0 equiv) and cooled to –30 °C. Cyclohexylzinc iodide (1.0 M in THF, 2.0 mL, 2.0 mmol, 2.0 equiv) was added dropwise to the resulting solution. The mixture was stirred at –30 °C for 30 min, then (1S)-2-iodocyclohept-2-en-1-yl pentafluorobenzoate (3; 432 mg, 1.0 mmol) was added dropwise as a solution in NMP (1.3 mL). The mixture was stirred at –30 to –10 °C for 16 h. A sat. aq NH4Cl solution (20 mL) was stirred at 25 °C until the copper salts had dissolved, and then extracted with Et2O (3 × 25 mL). The combined organic phases were washed with brine (10 mL) and dried (Na2SO4). Purification by column chromatography (silica gel, pentane) afforded the product (R)-4 as a colorless oil; yield: 264 mg (87%); 98% ee; [a]D20 +19.4 (c = 0.31, CH2Cl2).

IR (film): 2924 (s), 2852 (s), 1702 (s), 1450 (s), 1342 (m), 1323 (m), 1166 (m), 936 cm–1 (m).

GC (Chirasil-Dex CB, 25 mm × 0.25 mm); conditions: 60 °C (1 min), ramp of 2 °C/min to 160 °C; tR (min) = 14.223 (minor), 10.991 (minor), 9.160 (major); tR (min) = 14.223 (minor), 10.991 (minor), 9.160 (major).

HRMS (EI): m/z calcd for C13H22O: 194.1671; found: 194.1740.

HRMS (EI): m/z calcd for C13H24O: 196.1827; found: 196.1831.

HRMS (EI): m/z calcd for C13H24O: 196.1837; found: 196.1837.

Acknowledgment

We thank the Fonds der Chemischen Industrie and the DFG for financial support and Chemetall GmbH (Frankfurt) and BASF AG (Ludwigshafen) for the generous gift of chemicals.

References

PRACTICAL SYNTHETIC PROCEDURES

D. Soorukram, P. Knochel

Synthesis 2007, No. 4, 638–641 © Thieme Stuttgart · New York
PRACTICAL SYNTHETIC PROCEDURES

Synthesis of Optically Active \(\alpha\)-Substituted Ketones

(8) For the preparation of \(\alpha\)-chiral ketones by other methods, see for example: (a) Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.; Druelinger, M. J. J. Am. Chem. Soc. 1981, 103, 3081. (b) Meyers, A. I.; Williams, D. R.; White, S.; Erickson, G. W. J. Am. Chem. Soc. 1981, 103, 3088; see also references 1, 2 and 4 cited therein.
