PAPER

Synthesis of Perfluoroalkylated Bulky Triarylamines

Bassam Alameddine, a Corinne Savary, b Olivier Aeischer, b Titus A. Jenny b

a Chemistry Department, University of Balamand, P.O. Box 100, Tripoli, Lebanon
b Chemistry Department, University of Fribourg, 9 chemin du Musée, 1700 Fribourg, Switzerland
Fax +41(26)3009739; E-mail: titus.jenny@unifr.ch

Received 25 September 2006

Abstract: The synthesis of two new triarylamine compounds bearing perfluoroalkylated side chains is described. Good thermal stabilities combined with a blue emission make these compounds promising candidates for materials applications.

Key words: triarylamines, perfluoroalkylation, cross-coupling, blue emission, amorphous materials

Triarylamines have found wide application in devices that require properties like the generation, the transport, and the recombination of cationic or anionic charges such as organic light emitting diodes (OLED), photorefractive systems (PR), and solar cells, besides their use in electrophotographic devices like photocopiers and laser printers. These widespread applications are due to the low oxidation potential of the nitrogen atom which, upon hole injection, generates a stable triarylamine radical cation necessary for the hoping mechanism. The difficulty, however, resides in the deposition of a monocrystalline thin film to avoid the formation of defects and grain boundaries that act as traps for the charge carriers. As an alternative approach, the deposition of an amorphous thin film is used. Moreover, the major limitation of arylamines in these applications is their short lifetime because of the significant degradation caused by impurities and fatigue due to morphological changes during the device operation. Therefore, a high thermal stability, and the ability to form an amorphous phase are the two main properties necessary for the employment of a triarylamine product for such devices.

N,N,N’-Diphenyl-N,N’-(m-tolyl)benzidine (TPD) has been first reported as an efficient hole transporting material for electroluminescent (EL) devices, due to its ability to form an amorphous phase. Since then, various papers have been published on the synthesis of new nitrogen-containing oligomers, dendrimers as well as polymers. We wish to report herein a new strategy to achieve amorphous phases, simply by the addition of peripheral perfluorinated chains to relatively small N-containing aryl products. The perfluorinated chains are generally known to weaken the van der Waals interactions leading to reduction of the lateral intermolecular aggregation and, consequently, to a macroscopic amorphism. Additionally, the inert behavior of the perfluorinated chains in terms of chemical reactivity bestows the molecule with a better thermal stability.

The perfluoroalkylated starting materials 7 and 8 were synthesized by applying the most convenient Heck cross-coupling reaction conditions: the naphthylamine derivatives 1 and 2 were first transformed into their respective arenediazonium salts in quantitative yield. These stable and isolable tetrafluoroborate salts were reacted in a subsequent step with an appropriate commercially available perfluoroalkene, in the presence of a catalytical amount of palladium(II) acetate under ligandless conditions, affording the fluorinated alkene compounds 5 and 6 in 79 and 90% yields, respectively, after short reaction times. The hydrogenation of the brominated naphthalene derivative 5 was achieved by Rh/C catalyst, under 50 bar pressure of hydrogen, affording the perfluoroalkylated naphthalene 7 in 91% yield. On the other hand, the nitronaphthylated alkene 6 was hydrogenated in presence of a Pd/C catalyst reducing both the nitro and the olefin groups, yielding the desired product 8 in 94% yield (Scheme 1).

The reaction between the naphthylamine moiety 8 with two-fold excess of the brominated naphthalene 7 employing the palladium-catalyzed amination reaction under the

SYNTHESIS 2007, No. 2, pp 0271–0276
Advanced online publication: 21.12.2006
DOI: 10.1055/s-2006-958953; Art ID: Z19206SS
© Georg Thieme Verlag Stuttgart · New York

Scheme 1 Synthesis of the perfluoroalkylated naphthalene building blocks 7 and 8. Reagents and conditions: a) BF3·OEt2, r-BuNO2, DME; b) 1H,1H,2H-perfluorodecene, Pd(OAc)2, MeOH, 40 °C c) R/C, 50 bar H2, CH2Cl2, r.t., 1 d, 91%; d) Pd/C, 3 bar H2, MeOH–THF, r.t., 1 d, 94%.
mild Buchwald–Hartwig conditions18 (Scheme 2) only yields the perfluoroalkylated binaphthylamine 10. Increasing the reaction time resulted in the formation of trace amount of the debrominated species 11 along with the binaphthylamine derivative 10. No trace of the perfluoroalkylated trinaphthylamine derivative 9 was found despite corresponding claims in the patent literature.19,20

Thus, the cross-coupling reaction between an equimolar mixture of 7 and 8 yields the building block 10 in 71% yield. The palladium-catalyzed amination reaction between 10 and the perfluoroalkylated bromonaphthalene 7 using several bases like, sodium tert-butoxide, cesium carbonate, and sodium hydroxide does not lead to the formation of any product at room temperature, while it affords a mixture of the debrominated naphthalene 11 and the naphthalene–naphthalene homocoupling product 12 when the reaction mixture was heated at reflux (Scheme 3). When performing the more reactive lithiated derivative of 10 by exchange of the acidic proton by reaction with \textit{n}-BuLi, the subsequent reaction with 7 under suitable conditions13,21,22 yields exclusively the debrominated perfluoroalkylated naphthalene 11.

We believe that steric hindrance caused by the two bulky naphthalene groups prevents the third perfluoroalkylated naphthyl species to bind to the nitrogen atom and, hence, leads to attack at the non-activated carbon-5 position. Only few patents describe the synthesis of the parent triarylamine 9 (\(R = H\))10,20 characterized by elemental analysis and mass spectrometry, methods which do not allow for distinction between 9 and 12.

Applying the Buchwald–Hartwig conditions, the binaphthylamine derivative 10 and either the perfluoroalkylated bromobenzene or 4,4'-dibromobiphenyl, affords the desired triarylamine derivatives 13 and 14 in 64 and 57% yield, respectively (Scheme 4).

Both products are isolated as colorless solids showing relatively good solubility in common organic solvents. The UV-vis spectra of 10–3 M solutions of 13 and 14 in THF reveal the presence of two absorption bands for each compound: The former at 267 and 349 nm whereas the latter has the maxima at 301 and 367 nm. Measuring the fluorescence of both compounds at the same concentration (10–3 M in THF) reveals their blue emission nature: the excitation of 13 at 349 nm yields an emission peak at 430 nm.
nm, whereas the fluorescence spectrum of 14 shows an emission peak at 455 nm upon irradiating the solution at 367 nm (Figure 1).

Interestingly, the perfluoroalkylated triarylamine 13, isolated from synthesis as a transparent, amorphous waxy solid, was found to produce fibers even at room temperature. The investigation of such a fiber drawn at room temperature, under a polarized optical microscope, reveals a long homogeneous structure showing aligned features (Figure 2), a behavior which is normally observed for polymer melts. We therefore conclude that 13 aggregates in one dimension to a supramolecule, thereby mimicking a much larger species.

The preliminary differential scanning calorimetry (DSC) investigation of the thermal properties of 13 and 14 reveal very puzzling properties: product 13 remains glassy down to –20 °C and does not melt even at high temperature (~450 °C), while the triarylamine derivative, 14 exhibits a melting point at a relatively high temperature (242 °C).

Scheme 4 Synthesis of the perfluoroalkylated arylamine derivatives 13 and 14. Reagents and conditions: Pd(OAc)$_2$, t-Bu$_3$P, t-BuONa, toluene, reflux: a) 3.5 d, 64%; b) 7 d, 57%.

Figure 1 UV-vis spectra of 13 (red) and 14 (blue). Normalized emission spectra of 13 (dotted red) and 14 (dotted blue) in THF.

Figure 2 POM micrograph (× 100) of a fiber of 13 drawn at room temperature.
Finally, significant thermal stability was also observed since both products were heated several times up to 450 °C without causing any degradation.

In conclusion, new triarylamine compounds bearing perfluoroalkylated side chains were synthesized in good yields. The amorphous nature of the products was introduced, by design, by the addition of peripheral perfluoroalkylated chains well known for their weak van der Waals interaction. These materials excel by their excellent thermal stability over a wide temperature range allowing them to be used for applications as blue-emissive materials.

NMR spectra were recorded with Bruker Avance DRX 500 and Bruker Avance DPX 360 spectrometers. Chemical shifts are referred to TMS as an internal standard. TLC analyses were done using aluminum sheets coated with silica gel 60 F254. Column chromatography was carried out using Merck silica gel 60 (0.04–0.063, 230–400 mesh). Electron impact (EI) and electrospray ionization (ESI) mass spectra (MS) were recorded on a Vacuum Generators Micromass VG 70/70E spectrometer and on a FT/ICR mass spectrometer Bruker 4.7T BioApex II. Differential scanning calorimetry traces were recorded using a Mettler Toledo DSC822e, calibrated with indium (mp 156.6 °C, Hf = 28.45 KJ mol –1) before each series of measurements. Polarization optical microscopy (POM) was carried out using an AxioScope Zeiss microscope; the photographs were taken with a Fujix Digital camera HC-300Z.

Diazotization; 4-Bromonaphthalene-1-diazonium Tetrafluoroborate (3); Typical Procedure

BF3·OEt2 (2.5 mL, 19.5 mmol) was placed in a three-necked round-bottomed flask equipped with an addition funnel, a septum, and a reflux condenser. The temperature was lowered to –15 °C and a solution of H2 and the mixture was stirred at r.t. for 24 h. The solvent was evaporated and the residual black solid was then purified by chromatographic filtration over a silica gel column using CH3Cl as eluent to afford 7 (4 g, 91%); Rf = 0.62 (pentane–CH3Cl).

1-Bromo-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodec-1-ene)-4-nitronaphthalene (6)

A solution of 4 (4.43 g, 6.7 mmol) and Rh/C (0.28 g, 0.13 mmol) in degassed CH3Cl (35 mL) was placed under argon and the mixture was stirred at r.t. for 24 h. The solvent was evaporated and the residual black solid was then purified by chromatographic filtration over a silica gel column using CH3Cl as eluent to afford 8 (5 g, 91%); Rf = 0.62 (pentane–CH3Cl).

1-H NMR (360 MHz, CDCl3); δ = 8.31–8.34 (m, 1 H arom), 7.94–7.98 (m, 1 H arom), 7.72–7.74 (d, J = 7.7 Hz, 1 H arom), 7.61–7.66 (m, 2 H arom), 7.22–7.24 (d, J = 7.7 Hz, 1 H arom, 3.34–3.38 (m, 3 H, CH2CH2CF3), 2.4–2.55 (m, 2 H, CH2CH2CF3).

1C NMR (90.55 MHz, CDCl3); δ = 135.2 (arom), 132.62 (arom), 123.35 (arom), 129.71 (arom), 128.4 (arom), 127.38 (arom), 127.3 (arom), 126.75 (arom), 123.33 (arom), 122.26 (arom), 31.87–32.36 (m, CH3CH2CF3), 23.5–23.6 (m, CH2CH2CF3).

(4,4,4,5,5,5,6,6,7,7,8,8,9,10,10-Heptadecafluorodecyl)-1-naphthylamine (8)

A solution of 6 (6.03 g, 1.5 mmol) and Pd/C (0.08 g, 0.75 mmol, 10% Pd) in degassed THF–MeOH (1:1, 15 mL) was placed under argon and the mixture was stirred at r.t. for 24 h. The solvent was evaporated and the residual black solid was then purified by chromatographic filtration over a silica gel column with pentane–CH3Cl (2:1) as eluent (0.83 g, 94%); Rf = 0.21 (2:1 pentane–CH3Cl).

B. Alameddine et al.

1H NMR (360 MHz, CDCl₃): δ = 7.94–7.96 (d, J = 9.05 Hz, 2 H arom), 7.81–7.83 (d, J = 8.35 Hz, 2 H arom), 7.23–7.34 (m, 4 H arom), 6.80–6.82 (d, J = 7.70 Hz, 2 H arom), 6.75–6.77 (d, J = 7.70 Hz, 2 H arom), 5.8 (br s, 1 H NH), 3.09–3.13 (m, 4 H, CH₂CH₂CF₃), 2.19–2.24 (m, 4 H, CH₂CH₂CF₃).

13C NMR (90.55 MHz, CDCl₃): δ = 133.92 (arom), 133.35 (arom), 131.45 (arom), 129.8 (arom), 127.28 (arom), 127.3 (arom), 127.13 (arom), 126.08 (arom), 125.27 (arom), 124.38 (arom), 33.3 (br s, CH₂CH₂CF₃), 32.51 (br s, CH₂CH₂CF₃).

EI-MS (HCO₂H–THF): m/z (%) = 1732 ([M + HCO₂]⁺, 55, 1683 (M⁺, 100).

EI-MS: m/z (%) = 1683 (M⁺, 100), 1664 ([M – F]⁻, 40), 1250 ([M – CH₂CF₃]⁻, 45), 789 (10).

N,N,N′,N′-Tetakis(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl)-1-naphthyl-1,1′-biphenyl-4,4′-diamine (14)
Prepared following the amination reaction described above: 9 (3.5 g, 3 mmol), 4,4′-dibromobiphenyl (0.46 g, 1.47 mmol), Pd(OAc)₂ (64 mg, 0.29 mmol), t-Bu₂P (71 mg, 0.35 mmol), t-BuONa (0.15 g, 0.35 mmol), and toluene (10 mL); time: 2 d. The reaction mixture was filtered and the organic phase was washed with aq sat. NH₄Cl (25 mL) and aq 5% solution of KCN (10 mL). NMR (DCl₃-d₅): δ = 8.16–8.18 (d, J = 8.64 Hz, 4 H arom), 8.05–8.07 (d, J = 8.6 Hz, 4 H arom), 7.51–7.55 (t, J = 7.27 Hz, 4 H arom), 7.34–7.37 (m, 8 H arom), 7.29–7.31 (m, J = 8.17 Hz, 4 H, C₆H₄), 6.65–6.67 (d, J = 8.17 Hz, 4 H, C₆H₄), 2.56–2.68 (m, 8 H, CH₂CH₂CF₃).

EI-MS (HCO₂H–THF): m/z (%) = 2473 (M⁺, 100), 1957 (58), 686 (48).

EI-MS: m/z (%) = 2473 (M⁺, 100%).

Acknowledgment
We thank the Swiss National Science Foundation National Research Program: Supramolecular Functional Materials (NRP 47-057425) for supporting this work.

References

(14) Visjager, J.; Tervort, T. A.; Smith, P. Polymer 1999, 40, 4533.