An Efficient Synthesis of 2,5-Diamino-1,4-benzoquinone

Hari Babu Mereyala, Mahankali Venu Chary, Srinivas Kantewari*

Organic Chemistry Division – II, Indian Institute of Chemical Technology, Hyderabad 500 007, India
E-mail: Kantevari@yahoo.com
Received 6 September 2006; revised 25 October 2006

SYNTHESIS 2007, No. 2, pp 0187–0189 xx .xx .2 0 07
Advanced online publication: 14.12.2006
DOI: 10.1055/s-2006-958945; Art ID: Z18406SS
© Georg Thieme Verlag Stuttgart · New York

Abstract: A novel and efficient synthesis of 2,5-diamino-1,4-benzoquinone is described. The reaction involves a palladium/charcoal hydrogenolysis as the key step and provides the desired product in only four steps and very good overall yield.

Key words: palladium-on-charcoal, hydrogenolysis, 2,5-diamino-3,6-dibromoquinone, terreusinone

Synthesis of natural products is a challenge to organic chemists. Recently, marine microorganisms have proven to be a rich source for structurally novel natural products required for developing fine chemical agents. The natural product terreusinone \(\{2,6\text{-bis[(1R)-1-hydroxyisobutyl]}-1H,5H\text{-pyrrolo[2,3-b]indole-4,8-dione}\}\) (Figure 1), isolated from the marine algicolous fungus \(\text{Aspergillus terreus}\), was detected to possess UV-A absorbing activity with an ED\(_{50}\) value of 70 \(\mu\)g/mL.\(^1\) 2,5-Diamino-1,4-benzoquinone (Fragment 1) is an integral structure of naturally occurring biologically active compounds\(^1\) such as benzoquinonium chloride (Figure 2), a skeletal muscle relaxant.\(^{2a,b}\) It is a useful intermediate for the preparation of many industrial dyestuffs\(^3a\) and finds application in cross-linking and alkylation of DNA by aziridinylquinone.\(^3b\) Classical 2,5-diamino-1,4-benzoquinone (I) syntheses involve (i) reduction of 2,5-diazido-1,4-benzoquinone with sodium borohydride in ethanol to furnish I in 62% yield (path a),\(^4\) or (ii) disproportionation and reduction of 2,5-diazido-1,4-benzoquinone (a highly explosive compound) with sodium borohydride in ethanol to give I in 31% yield (path b), or (iii) reaction of ammonia with 2,5-dimethoxy-1,4-benzoquinone\(^5\) (path c) (Scheme 1). Derivatives of I are prepared by the oxidation of appropriate amines or alcohols,\(^6a\) and nuclear amination of 1,4-hydroquinones with aromatic amines catalyzed by fungal laccases (EC 1.10.3.2) from \(\text{Trametes sp.}\) and \(\text{Myceliophthora thermophila}.\(^{6b}\) These classical methods involve intermediates that are highly explosive or not-so-easy to synthesize. The present work describes a novel and efficient method for the synthesis of 2,5-diamino-1,4-benzoquinone (I) based on the hydrogenolysis of 2,5-diamino-3,6-dibromoquinone over palladium-on-charcoal.

[Figure 1: terreusinone and its fragments]

[Figure 2: Structure of benzoquinonium chloride]

Scheme 1 Reagents and conditions: (a) EtOH, excess NaBH\(_4\), 20 °C; (b) (i) acetone; (ii) EtOH, excess NaBH\(_4\), 20 °C; (c) EtOH, aq NH\(_3\), 80 °C, 1 h.

In continuation of our program on the syntheses of natural products, we attempted the synthesis of terreusinone having a dipyrrolo-1,4-benzoquinone moiety. In the literature
only a few methods are available for the synthesis of dipyralo-1,4-benzoquinones. These are, (i) synthesis of 1,5-bis(4-hydroxyphenyl)pyrrolo[2,3/f]benzopyrro-4,8-dione (2a) from 2,5-bis(4-hydroxyphenyl)amine-3,6-dibromo-1,4-benzoquinone (3a) and ethyl acetocetate in refluxing DMF using catalytic amounts of triethylamine\(^{7}\) (Scheme 2), and (ii) a low-yielding pyrolysis of the diketopiperazine 4c at 950 °C to give dipyralo-1,4-benzoquinone (2c)\(^{9}\) (Scheme 2).

In our efforts to synthesize the terreusinone analogue we followed the procedure given by Soliman et al.\(^{7}\) However, the reaction of 2,5-diamino-3,6-dibromoquinone (3b) (Scheme 2) with ethyl acetocetate, triethylamine in refluxing DMF resulted only in the isolation of starting material, the reaction was unsuccessful. However, a recently reported one-pot synthesis of 2,5,6-trimethyl-1H-indole-4,7-dione (7) from the photolytic reaction of 2-amino-5,6-dipyrrolo-1,4-benzoquinones. These are, (i) synthesis of terreusinone (Figure 1); for this we needed the reaction of 2,5-diamino-3,6-dibromoquinone (11) was prepared starting from 1,4-benzoquinone in quantitative yield following the procedure of Hegedus et al.\(^{10b}\) (Scheme 4). The 2,5-diamino-1,4-benzoquinone (1) was synthesized by hydrogenolysis of 11 with catalytic amounts of 5% palladium on charcoal\(^{11}\) at 45 psi in methanol at ambient temperature. Subsequent base hydrolysis with triethylamine in methanol–water (1:1) resulted in the formation of 1 in 82% yield. Compound 1 turned reddish-brown to black at 325–330 °C and did not melt till 360 °C.\(^{2}\) Product 1 was fully characterized by analysis of its spectral data. The \(^{1}\)H NMR\(^{12}\) spectrum of 1 showed two singlets for the four amino H-atoms at \(\delta = 7.05\) and 7.80 and the two equivalent vinyl H-atoms at \(\delta = 5.32\). The IR spectrum showed characteristic absorptions for the amino group at 3200 cm\(^{-1}\). The mass spectrum of 1 showed a molecular ion at \(m/z\) 138, consistent with the formula C\(_8\)H\(_{10}\)N\(_2\)O\(_2\). The IR, \(^{1}\)H NMR, and mass spectra are in complete agreement with its structure.

In conclusion, an efficient synthesis of 2,5-diamino-1,4-benzoquinone (1) has been developed with success using hydrogenolysis of 11 with catalytic amounts of palladium-on-charcoal. This procedure seems to be amenable to large-scale application.

Melting points were measured with a Fischer–Johns melting-point apparatus, and are not corrected. \(^{1}\)H NMR spectra were recorded with a Varian Unity 400 spectrometer (400 MHz) in DMSO-\(d_6\). Chemical shifts relative to TMS as internal standard are given as \(\delta\) values in ppm. IR spectra were taken with a PerkinElmer 1725FT spectrophotometer. EI-MS mass spectra were measured at 70 eV (EI). The abbreviations used are as follows: s, singlet; s, strong stretch; m, medium stretch; br, broad stretch. Compounds 1,4-benzoquinone (8)\(^{10a}\) and tetrabromo-1,4-hydroquinone (9)\(^{10b}\) were prepared according to the literature procedure.

Tetrabromo-1,4-benzoquinone (10)

This compound was prepared from tetrabromo-1,4-hydroquinone (9) according to the procedure described by Hegedus et al.\(^{10a}\)

\(\text{IR (KBr): 1690 (s, C=O), 1570 (m), 1550 (m), 700 cm}^{-1} (m).\)

\(\text{MS (EI): } m/z \% = 424 (20, [M + 2]^+), 422 (76), 345 (62), 316 (15), 183 (17), 130 (100), 79 (16).\)

2,5-Diamino-3,6-dibromo-1,4-benzoquinone (11)

This compound was prepared from p-bromoanil 10 according to Hegedus et al.10b

IR (KBr): 3390 (s, N-H), 3300 (s, N–H) 3240 (s, N–H) 1590 cm–1 (s, C=O).

1H NMR (400 MHz, DMSO-d6): δ = 7.82 (s, 2 H), 8.25 (s, 2 H).

MS (EI): m/z (%) = 296 (75, [M + 2]+), 217 (47), 187 (6), 148 (9), 120 (10), 80 (21), 68 (100), 52 (17), 40 (47).

2,5-Diamino-1,4-benzoquinone (1)

To a solution of 2,5-diamino-3,6-dibromoquinone (11; 20 g, 67.6 mmol) in MeOH (400 mL) in a Büchi hydrogenation glass vessel (1 L), was added 5% Pd/C (2 g, w/w 10%), and the suspension was hydrogenated at 45 Psi for 6 h at r.t. The mixture was filtered, the filtrate (pH 2 to 3) was treated with Et3N (15.4 g, 152 mmol) and H2O (400 mL) at 10 °C and the mixture was stirred at r.t. (pH 10–12) for 4.5 h. The precipitate was collected by filtration, washed with H2O (2 × 50 mL), and dried in vacuum to give analytical pure 1 as a bright reddish-brown crystalline solid; yield: 7.6 g (82%); mp >360 °C (Lit.4,5 mp 325–330 °C).

IR (KBr): 3360 (s, N–H), 3200 (s, N–H), 1530 cm–1 (s, C=O).

1H NMR (400 MHz, DMSO-d6): δ = 5.32 (s, 2 H), 7.04 (br s, 2 H), 7.80 (br s, 2 H).

MS (EI): m/z (%) = 139 (86, [M + 1]+), 111 (16), 70 (23), 41 (100).

Acknowledgment

The authors express their thanks to the Director of the IICT for his interest in this work and for providing the necessary facilities.

References