Solvent-Free Synthesis of 6-Arylbenzimidazo[1,2-c]quinazolines under Microwave Irradiation

Hernán Pessoa-Mahana,* a C. David Pessoa-Mahana, b Ricardo Salazar, a Jaime A. Valderrama, c Edmundo Saez, b Ramiro Araya-Maturana a

a Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
Fax +56(2)6782868; E-mail: hpessoa@ciq.uchile.cl
b Departamento de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
c Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile

Received 16 October 2003; revised 9 December 2003

Abstract: The syntheses of 2-(2-nitrophenyl)-1-benzoyl-1H-benzimidazole derivatives 5–9 and their reduction to the corresponding 2-benzimidazoylbenzamides 10–13 are described. Compounds 10–13 were cleanly and efficiently converted to the corresponding 6-arylbenzimidazo[1,2-c]quinazolines 17–20 by microwave activation using SiO2–MnO2 as solid inorganic support.

Key words: benzimidazoles, heterocyclization, microwaves, benzimidazoquinazolines, solvent-free reactions

The synthesis of compounds belonging to benzimidazo[1,2-c]quinazoline series1,2 constitutes an important area of research due to their interesting DNA binding properties.3–5 In a previous paper we reported that the reaction of 1-acetyl-2-(2-nitrophenyl)benzimidazole (1) with iron in acetic acid–ethanol–water afforded a mixture of benzimidazoquinazoline 2 and 2-arylbenzimidazole 3 (Figure 1).6 The formation of compounds 2 and 3 was interpreted assuming the participation of a dihydrobenzimidazoquinazoline intermediate.

In continuation of our work, we wish to report a novel and interesting approach for the synthesis of 6-arylbenzimidazo[1,2-c]quinazolines 17–20 as sole products, using microwave activation on the precursor N-[2-(1H-benzimidazol-2-yl)phenyl]benzamides 10–13. Compounds 10–13 were obtained from the corresponding 5–9 benzoylbenzimidazole derivatives under reductive conditions.

The starting benzimidazole 4 required for the study was prepared from o-nitrobenzaldehyde by using our previously reported procedure.6 Compound 4 was reacted with a range of 4-substituted benzoyl chlorides at 0 °C in THF using triethylamine for trapping the hydrogen chloride (Equation 1). This treatment provided the corresponding amides 5–9 in good yields (Table 1). The numbering of the general formulas of compounds 5–9, 10–13, and 17–20 in Equations 1–3 does not follow IUPAC rules, but makes interpretation of NMR spectra easier.

Amides 5–9 were subjected to reduction with iron in acetic acid–ethanol–water solution at 45–50 °C (Equation 2). This afforded the corresponding rearranged products 10–

Table 1 1-Benzoylbenzimidazoles 5–9 Prepared by Reaction of 4 with Benzoyl Chlorides

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>H</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>Cl</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>MeO</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>NO2</td>
<td>77</td>
</tr>
</tbody>
</table>

SYNTHESIS 2004, No. 3, pp 0436–0440
Advanced online publication: 26.01.2004
© Georg Thieme Verlag Stuttgart · New York
Solvent-Free Synthesis of 6-Arylbenzimidazo[1,2-c]quinazolines

13 in good yields and no benzimidazo[1,2-c]quinazolines were detected by 1H NMR analysis of the crude reaction products. Reduction of 9 gave a complex reaction mixture and no efforts were made to isolate the products. The results are summarized in Table 2.

Table 2 Products 10–13 Formed by Reduction of 1-Benzoylbenzimidazoles 5–8 with Iron

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>H</td>
<td>82</td>
</tr>
<tr>
<td>11</td>
<td>Cl</td>
<td>86</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>MeO</td>
<td>93</td>
</tr>
</tbody>
</table>

The results indicate that cyclization of amides to the corresponding benzimidazo[1,2-c]quinazoline derivatives under reductive conditions is an unfavorable process relative to the transposition reaction.

The formation of products 10–13 from 5–8 probably involves intermediates 15 and 16, as depicted in Scheme 1. According to this mechanism, the formation of tetracyclic compounds by dehydration reaction of 16 could be favorable in a nonaqueous medium. Based on this assumption and on the dipolar transition state7 involved in the formation of intermediates 16 by cyclization from the respective precursors 10–13 (Scheme 1), we planned to use microwave stimulation to induce the formation of tetracyclic compounds 17–20 from 10–13. Heterocyclization of com-

Table 3 6-Phenylbenzimidazo[1,2-c]quinazolines Prepared by Microwave-Induced Cyclization of Benzimidazoles 10–13

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>H</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>Cl</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>MeO</td>
<td>45</td>
<td>37</td>
</tr>
</tbody>
</table>

Scheme 1

Equation 2

\[
\text{Product R Time (min) Yield (%)}
\]

\[
\begin{array}{ccc}
17 & H & 30 & 41 \\
18 & Cl & 40 & 54 \\
19 & F & 30 & 56 \\
20 & MeO & 45 & 37 \\
\end{array}
\]
pounds 10–13 using microwave induction was explored under solvent-free conditions using a solid inorganic matrix. Due to the fact that MnO2 has a large capacity to transfer the dielectric heating we used a 95:5 mixture of silica gel-manganese dioxide as solid support. Compounds 10–13 were impregnated on the support and then irradiated at 1000 W for an appropriate time (Table 3).

The treatment of 10–13 under microwave irradiation afforded the expected 6-phenylbenzimidazo[1,2-c]quinazolines 17–20 in moderate yields (Equation 3). The reaction proceeded within 30–45 minutes, meanwhile purely thermal conditions (reflux in anhydrous m-xylene over 15 h) gave a mixture of starting materials 10–13 and tetracyclic 6-phenylbenzimidazo[1,2-c]quinazolines 17–20. Attempts to cyclize compound 11 to the corresponding phenylbenzimidazo[1,2-c]quinazolines 18 using only silica gel were unsuccessful, indicating therefore the efficiency of manganese dioxide for the microwave transfer energy.

In summary, the syntheses of 6-arylbenzimidazo[1,2-c]quinazolines have been accomplished by employing the reduction of 2-(2-nitrophenyl)-1-(4-substituted benzoyl)-1H-benzimidazoles followed by heterocyclization of the corresponding benzimidazo[1,2-c]benzamides, under solvent-free microwave irradiation. This new approach firmly confirms the great utility of microwave stimulation in heterocyclization reactions for preparing complex polycyclic systems.

All reagents were obtained commercially and used without further purification. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were recorded with a FT Bruker spectrometer in KBr optics. 1H NMR and 13C NMR spectra were obtained with a Bruker DRX-300 and a Bruker ACP-200 spectrophotometers. The chemical shifts are expressed in ppm (δ) scale from TMS, J values are given in Hertz for solutions in CDCl3 unless otherwise indicated. Microanalyses were determined on a Fisons EA 1108 instrument. Silica gel Merck 60 (70–230 mesh) and DC-Alufolien 60 F254 were normally used for column and TLC chromatography, respectively. The microwave-assisted procedures were carried out in a domestic microwave oven operating at 1000 W. MnO2 was prepared by our reported procedure. The solid support was prepared by heating a 95:5 mixture of silica gel (70–230 mesh) and MnO2 at 300 °C for 2 h. Petroleum ether used had bp 70–90 °C.

1-Benzoyl-1H-benzimidazole Derivatives 5–9; 1-(4-Fluorobenzoyl)-2-(2-nitrophenyl)-1H-benzimidazole (7); Typical Procedure

4-Fluorobenzoyl chloride (330 mg, 2.09 mmol) was slowly added to a stirred solution of 2-(2-nitrophenyl)-1H-benzimidazole (4; 500 mg, 2.09 mmol), Et3N (210 mg, 2.09 mmol) and anhyd THF (50 mL) under N2 at 0 °C. The mixture was maintained at rt. with stirring for 4 h and then poured into H2O (100 mL). The mixture was extracted with EtOAc (3 × 50 mL) and the combined organic layers were dried (MgSO4). Removal of the solvent afforded 7; yield (crude): 687 mg (91%); mp 165–166 °C (EtOH).

IR: 3032, 1703, 1534, 1302 cm –1 .

1H NMR (300 MHz): δ = 7.07 (d, 1 H, J = 8.2 Hz, 7-H), 7.23 (t, 2H, J = 8.4 Hz, 11-H, 13-H), 7.36 (t, 1 H, J = 7.5 Hz, 6-H or 5-H), 7.49 (t, 1 H, J = 7.5 Hz, 5-H or 6-H), 7.72–7.92 (m, 5 mg, 4-H, 18-H, 19-H and 10-H, 14-H), 7.96 (d, J = 8.0 Hz, 1 H, 17-H), 8.28 (d, J = 8.0 Hz, 1 H, 20-H).

13C NMR (75.47 MHz): δ = 113.7, 116.1, 120.2, 124.6 (2 C), 124.8 (d, J = 8.9 Hz), 125.0, 127.3, 128.4 (d, J = 2.9 Hz), 130.8, 132.8, 132.9, 133.0, 133.4, 133.6, 142.8, 147.2, 150.3, 165.9 (d, J = 257 Hz), 166.6. Anal. Calcd for C33H27FN2O6: C, 66.47; H, 3.36; N, 11.51.

1-Benzoyl-2-(2-nitrophenyl)-1H-benzimidazole (5)

Prepared from 4 (420 mg, 1.75 mmol) and benzoyl chloride (246 mg,1.75 mmol); yield (crude): 457 mg (76%); mp 154.5–155.5 °C (EtOH).

IR: 3030, 1697, 1524, 1306 cm –1 .

1H NMR (300 MHz): δ = 6.93 (d, 1 H, J = 8.2 Hz, 7-H), 7.25 (t, 1 H, J = 8.2 Hz, 5-H or 6-H), 7.37 (t, 1 H, J = 8.2 Hz, 6-H or 5-H), 7.43 (t, 2 H, J = 8.0 Hz, 18-H and 19-H), 7.56–7.76 (m, 6 H, 4-H, and C6H4,CO), 7.85 (d, J = 8.0 Hz, 1 H, 17-H), 8.16 (d, J = 8.2 Hz, 1 H, 20-H).

13C NMR (75 MHz): δ = 114.0, 120.6, 124.4, 124.6, 124.9, 127.5, 128.7 (2 C), 130.0 (2 C), 130.7, 132.4, 132.9, 133.4, 133.5, 133.8, 142.8, 147.2, 150.4, 167.8. Anal. Calcd for C33H27FN2O6: C, 69.95; H, 3.82; N, 12.24. Found: C, 69.91; H, 3.93; N, 12.11.

1-(4-Chlorobenzoyl)-2-(2-nitrophenyl)-1H-benzimidazole (6)

Prepared from 4 (462 mg, 1.93 mmol) and 4-chlorobenzoyl chloride (338 mg, 1.93 mmol); yield (crude): 670 mg (92%); mp 278.2–279.0 °C (EtOH).

IR: 3030, 1710, 1530, 1352 cm –1 .

1H NMR (300 MHz): δ = 6.95 (d, 1 H, J = 8.3 Hz, 7-H), 7.26 (t, 1 H, J = 8.0 Hz, 5-H or 6-H), 7.38–7.42 (m, 3 H, 5-H or 6-H, 11-H and 13-H), 7.62–7.79 (m, 5 H, 4-H, 18-H, 19-H and 10-H, 14-H), 7.85 (d, J = 8.0 Hz, 1 H, 17-H), 8.17 (d, J = 8.0 Hz, 1 H, 20-H).

13C NMR (75 MHz): δ = 113.8, 120.7, 124.6, 124.7, 125.0, 127.3, 129.1 (2 C), 130.6, 130.8, 131.5 (2 C), 132.9, 133.3, 133.6, 140.4, 142.8, 147.2, 150.3, 166.7. Anal. Calcd for C33H26Cl2N2O6: C, 63.37; H, 3.38; N, 11.16. Found: C, 63.37; H, 3.38; N, 11.16.

1-(4-Methoxybenzoyl)-2-(2-nitrophenyl)-1H-benzimidazole (8)

Prepared from 4 (380 mg, 1.59 mmol) and 4-methoxybenzoyl chloride (271 mg, 1.59 mmol); yield (crude): 511 mg (86%); mp 128–129 °C (EtOH).

IR: 3030, 1700, 1525, 1348 cm –1 .

1H NMR (300 MHz): δ = 3.81 (s, 3 H, OCH3), 6.87 (d, 2 H, J = 8.8 Hz, 11-H and 13-H), 7.02 (d, 1 H, J = 8.0 Hz, 7-H), 7.21 (t, 1 H,
$J = 7.7$ Hz, 5-H or 6-H), 7.33 (t, 1 H, $J = 7.7$ Hz, 6-H or 5-H), 7.57 (td, 1 H, $J = 7.6$, 2.1 Hz, 18-H or 19-H), 7.64–7.76 (m, 4 H, 4-H, 10-H, 14-H and 19-H, or 18-H), 7.84 (d, $J = 8.1$ Hz, 1 H, 17-H), 8.11 (d, $J = 8.0$ Hz, 1 H, 20-H).

1C NMR (DMSO-d_6, 75 MHz): $\delta = 56.2, 114.4, 114.7$ (2 C), 120.6, 124.4, 128.4, 129.5, 123.6, 128.1, 131.2, 131.3 (2 C), 133.3, 133.4, 134.1, 134.2, 149.8, 150.1, 164.4, 167.1.

Anal. Calcd for C$_{33}$H$_{24}$N$_2$O$_3$: C, 69.15; H, 4.07; N, 12.10. Found: C, 69.12; H, 4.18; N, 11.93.

1H NMR (DMSO-d_6, 300.13 MHz): $\delta = 7.26–7.37$ (m, 3 H, 18-H, 17-H and 12-H or 11-H), 7.52–7.59 (m, 3 H, 3-H, 5-H, and 11-H or 12-H), 7.61 (d, 1 H, $J = 7.1$ Hz, 16-H or 19-H), 7.85 (d, 1 H, $J = 6.9$ Hz, 19-H or 16-H), 8.19 (d, 1 H, $J = 7.1$ Hz, 13-H), 8.28–8.33 (m, 2 H, 2-H, and 6-H), 8.91 (d, 1 H, $J = 7.7$ Hz, 10-H), 13.30 (s, 1 H, NH), 14.10 (s, 1 H, NHCO).

1C NMR (DMSO-d_6, 75 MHz): $\delta = 112.0, 116.0, 116.4$ (d, 2 C, $J = 22$ Hz), 118.8, 120.3, 122.8, 123.6, 124.0, 127.6, 130.4 (d, 2 C, $J = 9.3$ Hz), 131.2, 131.7 (d, $J = 2.9$ Hz), 133.7, 138.8, 142.2, 151.3, 164.2, 164.7 (d, $J = 249.7$ Hz).

Anal. Calcd for C$_{33}$H$_{24}$FN$_2$O$_3$: C, 72.48; H, 4.26; N, 12.69. Found: C, 72.09; H, 4.35; N, 12.36.

1H NMR (DMSO-d_6, 300.13 MHz): $\delta = 3.89$ (s, 3 H, OCH$_3$), 7.22 (d, 2 H, $J = 8.6$ Hz, 3-H and 5-H), 7.27–7.32 (m, 3 H, 18-H, 17-H, and 12-H or 11-H), 7.52 (t, 1 H, $J = 7.7$ Hz, 11-H, or 12-H), 7.60 (d, 1 H, $J = 6.1$ Hz, 16-H or 19-H), 7.86 (d, 1 H, $J = 6.2$ Hz, 19-H or 16-H), 8.17 (d, 1 H, $J = 7.8$ Hz, 13-H), 8.22 (d, 2 H, $J = 8.6$ Hz, 2-H, and 5-H), 8.92 (d, 1 H, $J = 8.3$ Hz, 10-H), 13.23 (s, 1 H,NH), 13.93 (s, 1 H, NHCO).

1C NMR (DMSO-d_6, 75.47 MHz): $\delta = 56.0, 112.0, 114.7$ (2 C), 115.9, 118.9, 120.4, 122.9, 123.3, 124.1, 127.4, 127.7, 128.9 (2 C), 130.1, 130.3, 130.9, 132.4, 134.2, 151.5, 162.8, 165.0.

Anal. Calcd for C$_{33}$H$_{24}$FN$_2$O$_3$: C, 73.44; H, 4.99; N, 12.24. Found: C, 73.23; H, 4.73; N, 12.34.

To a solution of 6 (523 mg, 1.40 mmol) in ethanol (15 mL) was added the inorganic support (55 g) and the suspension was vigorously stirred for 15 min at r.t. The solvent was removed in vacuo and the solid was irradiated at 1000 W for an appropriate time (Table 3), until TCL showed the disappearance of the starting material. The solid was thoroughly washed with acetone followed by removal of the solvent to afford 17: yield (crude): 27 mg (41%). A pure sample of 17 was obtained by column chromatography on silicic acid gel eluting with CH$_2$Cl$_2$ (21 mg, 32%). mp 231–233 °C (EtOH–petroleum ether, 2:1).

1H NMR (DMSO-d_6, 300.13 MHz): $\delta = 6.62$ (d, 1 H, $J = 8.4$ Hz, 8-H), 7.12 (td, 1 H, $J = 7.8$, 1.2 Hz, 9-H or 10-H), 7.48 (td, 1 H, $J = 7.8$, 1.1 Hz, 10-H or 9-H), 7.62–7.86 (m, 7 H, C$_6$H$_5$ and 2-H, 3-H), 7.96–8.04 (m, 2 H, 4-H and 11-H), 8.77 (dd, 1 H, $J = 7.7$ Hz, 14-H, 1-H).

1C NMR (DMSO-d_6, 75.47 MHz): $\delta = 114.7, 120.2, 122.9, 124.5, 125.9, 127.4, 128.5, 128.6 (2 C), 128.9, 129.6 (3 C), 131.3, 132.1, 134.5, 142.7, 144.6, 148.8.
6-(4-Chlorophenyl)benzimidazo[1,2-c]quinazoline (18)
Prepared from 11 (66.6 mg, 0.202 mmol); yield (crude): 34.1 mg (54%); mp 240–241.5 °C (EtOH–petroleum ether, 2:1).
IR: 3060, 1635, 1592 cm⁻¹.
1H NMR (200 MHz): δ = 6.75 (d, 1 H, J = 8.4 Hz, 8-H), 7.17 (td, 1 H, J = 7.3, 1.2 Hz, 9-H or 10-H), 7.50 (dt, 1 H, J = 7.2, 1.2 Hz, 10-H or 9-H), 7.63–7.85 (m, 2 H, 4-H and 11-H), 8.75 (dd, 1 H, J = 7.8, 1.5 Hz, 1-H).
13C NMR (50 MHz): δ = 114.2, 118.5, 120.2, 122.7, 124.3, 125.8, 128.2, 128.5, 129.1, 129.6 (2 C), 130.0 (2 C), 132.0, 132.7, 137.3, 142.3, 144.5, 147.4, 148.0.

6-(4-Fluorophenyl)benzimidazo[1,2-c]quinazoline (19)
Prepared from 12 (100 mg, 0.30 mmol); yield (crude): 52.4 mg (56%); mp 223–223.5 °C (EtOH–petroleum ether, 2:1).
IR: 3070, 1628, 1597 cm⁻¹.
1H NMR (200 MHz): δ = 6.69 (d, 1 H, J = 8.4 Hz, 8-H), 7.17 (td, 1 H, J = 7.9 , 1.2 Hz, 9-H or 10-H), 7.32–7.41 (m, 2 H, 15-H, 17-H), 7.50 (td, 1 H, J = 7.7 , 1.1 Hz, 10-H or 9-H), 7.68–7.86 (m, 4 H, 14-H, 18-H and 2-H, 3-H), 7.96–8.03 (m, 2 H, 4-H and 11-H), 8.75 (ddd, 1 H, J = 7.6, 1.3, 0.7 Hz, 1-H).
13C NMR (50 MHz): δ = 114.1, 116.6 (d, 2 C, J = 21.6 Hz), 118.5, 120.2, 122.7, 124.3, 125.8, 128.2, 128.5, 129.2, 130.5, 130.7 (d, 2 C, J = 9.3 Hz), 132.0, 142.3, 144.4, 147.5, 148.1, 164.2 (d, J = 248.5 Hz).

6-(4-Methoxyphenyl)benzimidazo[1,2-c]quinazoline (20)
Prepared from 13 (69.2 mg, 0.20 mmol); yield (crude): 24.4 mg (37%); mp 255–256 °C (EtOH–petroleum ether, 2:1).
IR: 3060, 1628, 1590, 1451, 1361 cm⁻¹.
1H NMR (200 MHz): δ = 3.97 (s, 3 H, OCH₃), 6.81 (d, 1 H, J = 8.4 Hz, 8-H), 7.11–7.18 (m, 3 H, 15-H, 17-H and 9-H or 10-H), 7.48 (td, 1 H, J = 7.7, 1.0 Hz, 10-H or 9-H), 7.66–7.84 (m, 4 H, 14-H, 18-H and 2-H, 3-H), 8.0 (d, 2 H, J = 8.1 Hz, 4-H and 11-H), 8.75 (dd, 1 H, J = 7.8, 1.3 Hz, 1-H).
13C NMR (50 MHz): δ = 55.6, 114.5, 114.6 (2 C), 118.3, 122.5, 124.2, 125.6, 126.7, 128.1 (2 C), 129.4, 130.0 (2 C), 131.8, 142.5, 144.4, 148.3, 148.5, 161.6.
Anal. Calcd for C₂₁H₁₅N₃O: C, 77.20; H, 4.92; N, 12.73.