Stereoselective Preparation of (Z)-γ-Silyl-γ,δ-Unsaturated Ketones and their Application in the Synthesis of 1,4-Diketones

Weixin Zheng, a Xian Huang* a,b

a Department of Chemistry, Zhejiang University (Xixi Campus, Hangzhou 310028, P. R. China
b The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, P. R. China
E-mail: huangx@mail.hz.zj.cn
Received 12 July 2002; revised 9 September 2002

Abstract: Hydrozirconation reaction of alkynylsilanes 1 followed by Michael addition to α,β-unsaturated ketones in the presence of CuBr·Me2S complex produced (Z)-γ-silyl-γ,δ-unsaturated ketones 3 stereoselectively. 1,4-Diketones were prepared via epoxidation and hydrolysis of 3.

Key words: silicon, zirconium, Michael additions, ketones, enones, alkynes

Alkenylsilanes serve as important intermediates in organic synthesis. 1 It is well documented that the γ-silyl-γ,δ-unsaturated ketones are essentially used in the synthesis of jasmone. 2 However, only a few synthetic methods for γ-silyl-γ,δ-unsaturated ketones have been published, 3,4 which had the disadvantage of low stereoselectivity. 3 In our preliminary work, the bifunctional ethenyl reagent containing silyl and zirconium moieties was obtained by the hydrozirconation reaction of alkynylsilanes. 5 Based on the high reactivity of the zirconium group, the electrophilic substitution to the zirconated intermediate could produce the polysubstituted vinyl silanes with high regio- and stereoselectivity. Owing to the silyl group, the vinyl silanes also have great potential to be converted to some useful compounds.

On the other hand, 1,4-diketones are widely used as building blocks for the preparation of five-membered carbocyclic and heterocyclic compounds. 6 A number of methods for the synthesis of 1,4-diketones have been developed. 7–10 Among them, the Michael–Stetter addition of aldehydes to α,β-unsaturated ketones, 7 cross aldol condensation of methyl ketones with α-bromo ketones followed by 1,3-dehydrobromination of the products and cleavage of cyclopropyl intermediates, 8 the alkylation of stabilized alkaline metal enolates, 9 enamines, 9b and tin enolates 10 by α-halocarbonyl compounds are mainly described. Also, the conjugate acylation of an enone by an acyl anion equivalent is a very important process. Developing acyl anion equivalents and the resulting polarity umpolung of carbon atoms remain challenging problems.

Herein, we wish to report the synthesis of (Z)-γ-silyl γ,δ-unsaturated ketones by hydrozirconation of alkynyl silanes followed by conjugate reaction to α,β-unsaturated ketones in the presence of copper (I) reagent and their utility in the synthesis of 1,4-diketones via epoxidation and hydrolysis.

Hydrozirconation of 1-alkynylsilanes 1 at room temperature in THF gave (E)-α-zirconated vinyl silanes 2, which reacted conjugatively with α,β-unsaturated ketones in the presence of 15 mol% CuBr·Me2S at 25 °C to yield (Z)-γ-silyl-γ,δ-unsaturated ketones 3 predominately in moderate to good yields (Scheme 1). The results are listed in Table 1.

Scheme 1

The investigation of 1H NMR spectra of the crude products showed the purity of Z-isomer was above 88%. When R was phenyl in compound 3 (Entry 1–5 in Table 1), the Z-configuration was verified by the X-ray diffraction study of compound 3d (Figure 1). 11 It could be observed that the syn-addition of Cp2Zr(H)Cl to phenylacetylenic silane led the zirconium atom occupying the carbon adjacent to the silyl group. For compounds 3f–o as oils, 1H NMR spectroscopy showed that the olefinic proton signal was characteristic.

Figure 1 ORTEP drawing of compound 3d.
cally split into a triplet with coupling constant $^3J(H,H) = 7.2$ Hz, which indicated the zirconium moiety occupied the $/c_97$-position carbon atom of the silyl group, which exhibited the same regioselectivity as that of the $3d$. The Z-olefin geometry was affirmed by $^1H–^1H$ 2D NOSEY spectra of $3l$ (Figure 2).

Figure 2 The $^1H–^1H$ 2D NOESY correlation of compound $3l$.

Epoxidation of 3 with m-chloroperbenzoic acid occurred at the vinyl silanes to give epoxides 4, which were treated with trifluoroacetic acid in refluxing methanol to afford 5 in good yields 12 (Scheme 2 and Table 2).

In conclusion, we have developed a novel route to the synthesis of $(Z)-\gamma$-silyl γ,δ-unsaturated ketones and studied their application in the synthesis of 1,4-diketones, which has the advantages of readily available materials, simple procedures, mild reaction conditions and good yields. The polarity umpolung of the α-silyl vinyl carbon atom occurred in the synthesis of 1,4-diketones 5, and the intermediate of the hydrozirconation reaction of alkynylsilanes, (E)-α-zirconated vinyl silane, served as an acyl anion equivalent (Scheme 3). 13 The investigation on the application of $(Z)-\gamma$-silyl γ,δ-unsaturated ketones in organic synthesis is still in progress.

Table 1 Synthesis of γ-Silyl γ,δ-Unsaturated Ketones 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R^1</th>
<th>R^2</th>
<th>Product</th>
<th>Reaction conditions: Temp (°C)/time (h)</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>$3a$</td>
<td>25/4</td>
<td>63 (96/4)</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Ph</td>
<td>p-$CH_2OC_6H_4$</td>
<td>$3b$</td>
<td>25/4</td>
<td>66 (95/5)</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>Ph</td>
<td>m-$NO_2C_6H_4$</td>
<td>$3c$</td>
<td>25/5</td>
<td>68 (95/5)</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>p-$NO_2C_6H_4$</td>
<td>CH$_3$</td>
<td>$3d$</td>
<td>25/5.5</td>
<td>70 (93/7)</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>(CH$_3$I)</td>
<td></td>
<td>$3e$</td>
<td>25/5</td>
<td>66 (95/5)</td>
</tr>
<tr>
<td>6</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>Ph</td>
<td>$3f$</td>
<td>25/1.5</td>
<td>76 (90/10)</td>
</tr>
<tr>
<td>7</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>p-$CH_2OC_6H_4$</td>
<td>$3g$</td>
<td>25/2.5</td>
<td>83 (90/10)</td>
</tr>
<tr>
<td>8</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>m-$NO_2C_6H_4$</td>
<td>$3h$</td>
<td>25/3</td>
<td>56 (88/12)</td>
</tr>
<tr>
<td>9</td>
<td>n-C_6H_{13}</td>
<td>p-$NO_2C_6H_4$</td>
<td>CH$_3$</td>
<td>$3i$</td>
<td>25/3</td>
<td>66 (89/11)</td>
</tr>
<tr>
<td>10</td>
<td>n-C_6H_{13}</td>
<td>(CH$_3$I)</td>
<td></td>
<td>$3j$</td>
<td>25/4</td>
<td>60 (90/10)</td>
</tr>
<tr>
<td>11</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>Ph</td>
<td>$3k$</td>
<td>25/2</td>
<td>72 (91/9)</td>
</tr>
<tr>
<td>12</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>p-$CH_2OC_6H_4$</td>
<td>$3l$</td>
<td>25/2</td>
<td>80 (92/8)</td>
</tr>
<tr>
<td>13</td>
<td>n-C_6H_{13}</td>
<td>Ph</td>
<td>m-$NO_2C_6H_4$</td>
<td>$3m$</td>
<td>25/3</td>
<td>54 (92/8)</td>
</tr>
<tr>
<td>14</td>
<td>n-C_6H_{13}</td>
<td>p-$NO_2C_6H_4$</td>
<td>CH$_3$</td>
<td>$3n$</td>
<td>25/3</td>
<td>59 (93/7)</td>
</tr>
<tr>
<td>15</td>
<td>n-C_6H_{13}</td>
<td>(CH$_3$I)</td>
<td></td>
<td>$3o$</td>
<td>25/4</td>
<td>60 (90/8)</td>
</tr>
</tbody>
</table>

a All products were identified by 1H NMR, IR, MS and elemental analyses.

b Isolated yield of purified 3 was based on the alkynylsilanes used.

c Percent ratio of $3/3_{162}$ was determined by the integral value of the vinylic protons in the 1H NMR spectra of the crude products.
To a suspension of Cp₂Zr(H)Cl (2 mmol) in THF (5 mL) in a Schlenk reaction tube, an alkynyl silane (1.0 mmol) was injected under nitrogen. The mixture was stirred at r.t. until a clear pale yellow solution of alkenylsilanes was obtained. The nmr spectra were recorded on a Bruker Avance 400 (400 Hz) spectrometer in CDC1₃ with TMS as the internal standard; chemical shifts are quoted in ppm and J values are given in Hz. IR spectra were recorded on a Bruker Vector 22 spectrometer. EIMS was run on a HP 5989B mass spectrometer.

Table 2 Synthesis of 1,4-Diketones

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R¹</th>
<th>R²</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>5a</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Ph</td>
<td>p-CH₃OC₆H₄</td>
<td>5b</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>(CH₃)₂</td>
<td></td>
<td>5c</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>C₆H₅</td>
<td>Ph</td>
<td>Ph</td>
<td>5d</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>C₆H₅</td>
<td>(CH₃)₂</td>
<td></td>
<td>5e</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>C₆H₅</td>
<td>Ph</td>
<td>Ph</td>
<td>5f</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>C₆H₅</td>
<td>Ph</td>
<td>p-CH₃OC₆H₄</td>
<td>5g</td>
<td>75</td>
</tr>
</tbody>
</table>

*All products were identified by ¹H NMR, IR, MS or elemental analyses.

α-Silyl-γ,δ-Unsaturated Ketones 3a–o; General Procedure

To a suspension of Cp₂Zr(H)Cl (2 mmol) in THF (5 mL) in a Schlenk reaction tube, an alkylsilane (1.0 mmol) was injected under nitrogen. The mixture was stirred at r.t. until a clear pale yellow solution of alkenylsilanes 2 was obtained.

To this pale yellow solution of 2, α,β-unsaturated ketone (1.2 mmol) and CuBrMe₂S (0.15 mmol) were added under nitrogen and the mixture was stirred under the conditions listed in Table 1. The reaction was quenched by sat. aq NH₄Cl and extracted with Et₂O. The combined organic phase was dried (MgSO₄) and evaporated. A pure product was obtained by column chromatography (silica gel; petroleum ether–EtOAc, 40:1).

(Z)-γ-Silyl-γ,δ-Unsaturated Ketones 3a–o; General Procedure

To a suspension of Cp₂ZrCl₂ (2 mmol) in THF (5 mL) in a Schlenk reaction tube, an alkylsilane (1.0 mmol) was injected under nitrogen. The mixture was stirred at r.t. until a clear pale yellow solution of alkenylsilanes 2 was obtained.

To this pale yellow solution of 2, α,β-ununsaturated ketone (1.2 mmol) and CuBrMe₂S (0.15 mmol) were added under nitrogen and the mixture was stirred under the conditions listed in Table 1. The reaction was quenched by sat. aq NH₄Cl and extracted with Et₂O. The combined organic phase was dried (MgSO₄) and evaporated. A pure product was obtained by column chromatography (silica gel; petroleum ether–EtOAc, 40:1).

References

1. IR (neat): 2952, 1713, 1446, 1250, 837 cm⁻¹.
2. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
3. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
4. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
5. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
6. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
7. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
8. IR (KBr): 3026, 2954, 1694, 1613, 1532, 1350, 1203, 838 cm⁻¹.
(Z)-1,3-Diphenyl-4-trimethylsilyl-4-nonen-1-one (3f)
Yield: 76%; colorless oil.

IR (neat): 3061, 2956, 1599, 1248, 752 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): 6 = 0.00 (s, 9 H), 0.88 (t, J = 7.1 Hz, 3 H), 1.26–1.31 (m, 4 H), 2.15–2.21 (m, 2 H), ABX, \(\delta_X = 3.25\), \(\delta_Y = 3.48\), \(\delta_Z = 4.30\) (J\(_{AB} = 6.9\) Hz, J\(_{BX} = 7.8\) Hz, J\(_{AX} = 16.2\) Hz, 3 H), 6.04 (t, J = 7.6 Hz, 1 H), 7.15–7.25 (m, 5 H), 7.40–7.44 (m, 2 H), 7.50–7.54 (m, 1 H), 7.85–7.89 (m, 2 H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 123.56, 129.12, 139.71, 143.68, 146.50, 152.15, 206.36\).

MS (EI): \(m/z (%) = 347\) (M\(^+\), 1), 73 (100).

Anal. Calcd for C\(_{24}\)H\(_{31}\)NO\(_3\)Si: C, 70.38; H, 7.63. Found: C, 70.39; H, 7.65.

(Z)-1-(4'-Methoxyphenyl)-3-phenyl-4-trimethylsilyl-4-nonen-1-one (3g)
Yield: 83%; colorless oil.

IR (neat): 2956, 1679, 1501, 1249, 1031, 837, 701 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): 6 = 0.00 (s, 9 H), 0.88 (t, J = 7.1 Hz, 3 H), 1.30–1.32 (m, 4 H), 2.15–2.19 (m, 2 H), 3.85 (s, 3 H), ABX, \(\delta_X = 3.19\), \(\delta_Y = 3.42\), \(\delta_Z = 4.29\) (J\(_{AX} = 7.1\) Hz, J\(_{BX} = 7.6\) Hz, J\(_{AX} = 15.9\) Hz, 3 H), 6.03 (t, J = 6.7 Hz, 1 H), 6.88 (d, J = 8.9 Hz, 2 H), 7.12–7.23 (m, 5 H), 7.85 (d, J = 8.2 Hz, 2 H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 123.56, 129.12, 139.71, 143.68, 146.50, 152.08, 45.12, 45.83, 126.12, 128.00, 128.17, 128.37, 128.48, 132.75, 137.61, 140.12, 142.15, 144.26, 199.21.

MS (EI): \(m/z (%) = 253\) (M\(^+\) + 1, 3), 73 (100).

Anal. Calcd for C\(_{25}\)H\(_{34}\)O\(_2\)Si: C, 76.09; H, 8.85. Found: C, 76.11; H, 8.89.

(Z)-1-(3-Nitrophenyl)-3-phenyl-4-trimethylsilyl-4-nonen-1-one (3h)
Yield: 56%; pale yellow oil.

IR (neat): 2958, 1697, 1543, 1352, 1249, 909, 734 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): 6 = 0.01 (s, 9 H), 0.89 (t, J = 7.3 Hz, 3 H), 1.31–1.33 (m, 4 H), 2.19–2.21 (m, 2 H), ABX, \(\delta_X = 3.32\), \(\delta_Y = 3.48\), \(\delta_Z = 4.28\) (J\(_{AX} = 7.1\) Hz, J\(_{BX} = 7.7\) Hz, J\(_{AX} = 16.2\) Hz, 3 H), 6.04 (t, J = 7.2 Hz, 1 H), 7.14–7.24 (m, 5 H), 7.61 (t, J = 8.0 Hz, 1 H), 8.16 (d, J = 7.8 Hz, 1 H), 8.37 (d, J = 8.1 Hz, 1 H), 8.62 (s, 1 H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 123.56, 129.12, 139.71, 143.68, 146.50, 138.87, 140.14, 142.08, 143.65, 197.35.

MS (EI): \(m/z (%) = 409\) (M\(^+\)\(^-\), 3), 73 (100).

Anal. Calcd for C\(_{26}\)H\(_{36}\)O\(_2\)Si: C, 76.09; H, 8.85. Found: C, 76.11; H, 8.73.

(Z)-4-(4'-Nitrophenyl)-5-trimethylsilyl-5-decen-2-one (3i)
Yield: 66%; pale yellow oil.

IR (neat): 2957, 1719, 1605, 1520, 1347, 1249, 840 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): 6 = 0.02 (s, 9 H), 0.93 (t, J = 7.2 Hz, 3 H), 1.36–1.41 (m, 2 H), 1.59–1.67 (m, 2 H), 2.07 (s, 3 H), 2.19–2.22 (m, 2 H), ABX, \(\delta_X = 2.78\), \(\delta_Y = 2.94\), \(\delta_Z = 4.21\) (J\(_{AX} = 7.6\) Hz, J\(_{AX} = 7.2\) Hz, J\(_{AX} = 16.8\) Hz, 3 H), 6.06 (t, J = 7.6 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 2 H), 8.13 (d, J = 8.8 Hz, 2 H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 0.48, 14.08, 22.54, 30.64, 31.93, 32.25, 45.06, 49.62, 123.51, 129.12, 139.71, 143.68, 146.50, 152.15, 206.36.

MS (EI): \(m/z (%) = 347\) (M\(^+\), 1), 73 (100).

Anal. Calcd for C\(_{26}\)H\(_{36}\)NO\(_5\)Si: C, 65.67; H, 8.41. Found: C, 65.69; H, 8.46.

(Z)-1-(Cyclohexan-3-yl)-1-trimethylsilyl-1-hexene (3j)
Yield: 60%; colorless oil.

IR (neat): 2956, 2861, 1715, 1447, 1249, 837, 758 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): 6 = 0.14 (s, 9 H), 0.90 (t, J = 6.9 Hz, 3 H), 1.31–1.34 (m, 4 H), 3.65–1.48 (m, 1 H), 1.56–1.68 (m, 1 H), 1.76–1.86 (m, 1 H), 2.00–2.36 (m, 3 H), 2.26–2.42 (m, 5 H), 5.96 (t, J = 7.4 Hz, 1 H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 0.02\) (s, 3 H), 13.41–3.48 (m, 4 H), 7.75–7.79 (m, 2 H).

MS (EI): \(m/z (%) = 253\) (M\(^+\) + 1, 3), 73 (100).

Synthesis 2002, No. 17, 2497–2502 · ISSN 0039-7881 © Thieme Stuttgart · New York
(Z)-γ-Silyl-γ,δ-unsaturated Ketones and their Application in the Synthesis of 1,4-Diketones

2501

MS (EI): m/z (%) = 423 (M* + 2), 73 (100).

(Z)-4-(4-Nitrophenyl)-5-trimethylsilyl-5-undecen-2-one (3n)

Yield: 59%; pale yellow oil.

IR (neat): 2956, 2859, 1715, 1611, 1448, 1249, 837 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 0.02 (s, 9 H), 0.91 (t, J = 7.1 Hz, 3 H), 1.29–1.42 (m, 6 H), 2.08 (s, 3 H), 2.17–2.23 (m, 2 H), ABX, δX = 2.77, δa = 2.95, δc = 4.21 (JAX = 7.9 Hz, JBX = 6.8 Hz, Jc = 16.6 Hz, 3 H), 6.06 (t, J = 7.4 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 2 H), 8.12 (d, J = 8.8 Hz, 2 H).

13C NMR (100 MHz, CDCl₃): δ = 35.56, 31.99, 32.75, 41.28, 43.50, 48.56, 141.13, 141.43, 212.61.

1H NMR (400 MHz, CDCl₃): δ = 3.54, 3.91, 4.85, 6.85, 7.18 (d, 1 H), ABX, δX = 10.1 Hz, JBX = 7.1 Hz, Jc = 16.6 Hz, 3 H), 6.06 (t, J = 7.4 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 2 H), 8.12 (d, J = 8.8 Hz, 2 H).

MS (EI): m/z (%) = 361 (M⁺, 1), 73 (100).

1,3-Diphenyldecane-1,4-dione (5f)

Yield: 85%; colorless oil.

IR (neat): 3054, 2931, 1715, 1685, 754, 701 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 0.82 (t, J = 6.9 Hz, 3 H), 1.14–1.22 (m, 2 H), 1.23–1.40 (m, 2 H), 1.51–1.63 (m, 2 H), 2.46–2.50 (m, 1 H), 2.56–2.60 (m, 1 H), ABX, δX = 3.12, δa = 4.04, δc = 4.04 (JAX = 7.9 Hz, JBX = 10.1 Hz, Jc = 18.0 Hz, 3 H), 7.27–7.53 (m, 8 H), 7.93–7.96 (m, 2 H).

MS (EI): m/z (%) = 309 (M⁺ + 1, 8), 105 (100).

MS (EI): m/z (%) = 359 (M⁺ + 1, 4), 135 (100).

1-(Cyclohexan-3-yl)-2-phenyl-1-acetone (5c)

Yield: 69%; colorless oil.

IR (neat): 3029, 2927, 1718, 1619, 1294, 1165, 788 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 1.55–1.71 (m, 2 H), 1.84–2.01 (m, 2 H), 2.10–2.29 (m, 3 H), 2.36–2.51 (m, 1 H), 2.85–2.91 (m, 1 H), 3.63 (s, 2 H), 7.10–7.35 (m, 5 H).

MS (EI): m/z (%) = 216 (M⁺, 4), 105 (100).

1,3-Diphenylmonone-1,4-dione (5d)

Yield: 80%; colorless oil.

IR (neat): 3054, 2931, 1715, 1685, 754, 701 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 0.82 (t, J = 6.9 Hz, 3 H), 1.14–1.22 (m, 2 H), 1.23–1.40 (m, 2 H), 1.51–1.63 (m, 2 H), 2.46–2.50 (m, 1 H), 2.56–2.60 (m, 1 H), ABX, δX = 3.12, δa = 4.04, δc = 4.04 (JAX = 7.9 Hz, JBX = 10.1 Hz, Jc = 18.0 Hz, 3 H), 7.27–7.53 (m, 8 H), 7.93–7.96 (m, 2 H).

MS (EI): m/z (%) = 197 (M⁺ + 1, 15), 43 (100).

1,3-Diphenyldecane-1,4-dione (5f)

Colorless oil; yield: 88%.

IR (neat): 2929, 2875, 1715, 1685, 1494, 754, 701 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 0.83 (t, J = 7.1 Hz, 3 H), 1.18–1.25 (m, 6 H), 1.49–1.56 (m, 2 H), 2.47–2.51 (m, 1 H), 2.57–2.61 (m, 1 H), ABX, δX = 3.12, δa = 4.04, δc = 4.04 (JAX = 3.6 Hz, JBX = 10.2 Hz, Jc = 18.0 Hz, 3 H), 7.27–7.57 (m, 8 H), 7.95–7.97 (m, 2 H).

13C NMR (100 MHz, CDCl₃): δ = 14.02, 22.48, 23.60, 28.69, 31.53, 41.86, 42.37, 53.32, 127.52, 128.10, 128.38, 128.56, 129.10, 133.20, 136.56, 138.25, 198.27, 209.49.

MS (EI): m/z (%) = 323 (M⁺ + 1, 23), 105 (100).

1-(4-Methoxyphenyl)-3-phenyldecane-1,4-dione (5g)

Yield: 75%; colorless oil.

IR (neat): 2930, 1756, 1715, 1675, 1601, 1506, 1249, 1195, 701 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 0.81 (t, J = 7.1 Hz, 3 H), 1.14–1.21 (m, 6 H), 1.40–1.63 (m, 2 H), 2.39–2.47 (m, 2 H), ABX, δX = 2.78, δa = 3.42, δc = 4.25 (JAX = 5.2 Hz, JBX = 9.8 Hz, Jc = 17.0 Hz, 3 H), 3.77 (s, 3 H), 6.85 (d, J = 8.8 Hz, 2 H), 7.24–7.36 (m, 5 H), 7.93 (d, J = 8.8 Hz, 2 H).

13C NMR (100 MHz, CDCl₃): δ = 14.0, 23.1, 32.2, 22.4, 29.5, 38.2, 39.5, 47.3, 56.0, 113.5, 126.9, 128.6, 129.3, 129.9, 129.6, 132.9, 134.3, 134.6, 166.4, 197.6, 208.2.

MS (EI): m/z (%) = 353 (M⁺ + 1, 4), 124 (100).

Anal. Calcd for C23H23O2: C, 78.38; H, 8.01. Found: C, 78.32; H, 8.05.

Synthesis 2002, No. 17, 2497–2502 ISSN 0039-7881 © Thieme Stuttgart · New York
X-Ray Crystal Data of 3d

The X-ray structural analysis of 3d (single crystal, Figure 1) crystallized from a hexane, colorless crystal, C₁₁₂H₁₄NO₃Si (367.51); triclinic P 1 with a = 7.6678(16), b = 11.185(2), c = 13.075(3) Å, α = 73.29(4)°, β = 84.132(4)°, γ = 80.324(4)°, V = 1056.7(4) Å³, Z = 2, D. = 1.155 Mg/m³, absorption coefficient 0.129 mm⁻¹ was performed at 293(2) K using graphite monochromated MoKα radiation (λ = 0.71073 Å, limiting indices –10 ≤ h ≤ 7, –14 ≤ k ≤ 14, –16 ≤ l ≤ 17, 0-range for data collection 1.63 to 28.29, reflections measured 6435, unique reflections 4657 (R int = 0.0614). Completeness to θ = 28.29° 88.6%, data/restraints/parameters = 4657/10/313. The structure was solved by direct methods and refined by full-matrix least-squares on F² using SHELXL-97 (Sheldrick, 1997) program system. All non-hydrogen atoms were refined anisotropically and the position of the hydrogen atoms was calculated as a riding model. The weighting scheme was w = 1/[σ(F²)² + (0.0785P)² + 0.0000P] with P = 1/3(Fo)²+2F²). Goodness-of-fit on F² 0.786; final R indices [I > 2σ (I)], R₁ = 0.0550, wR₂ = 0.1195; R indices (all data) R₁ = 0.1520, wR₂ = 0.1812.

Selected bond distances [pm] and bond angles [°]: Si–C(8) 1.896(3), C(6)–C(7) 1.482(4), C(7)–C(8) 1.335(4), C(7)–H(6) 0.92(3), C(8)–C(9) 1.538(4), C(9)–C(10) 1.515(4), C(9)–C(16) 1.531(5), C(9)–H(7) 0.99(3), C(16)–C(17) 1.499(5), C(16)–H(12) 0.997(17), C(16)–H(13) 0.981(18), C(17)–C(18) 1.486(5), C(8)–C(7)–C(16) 127.0(4), C(8)–C(7)–H(6) 121.2(19), C(6)–C(7)–H(6) 111.4(19), C(7)–C(8)–C(9) 119.8(3), C(7)–C(8)–Si 124.0(3), C(9)–C(8)–Si 116.2(2), C(8)–C(9)–H(7) 105.5(15), C(17)–C(16)–C(9) 114.6(3), C(17)–C(16)–H(12) 104.2(17), C(9)–C(16)–H(12) 108.7(18), C(17)–C(16)–H(13) 109.4(19), C(9)–C(16)–H(13) 109.3(19), H(12)–C(16)–H(13) 110.3(3), O(1)–C(17)–C(18) 121.0(4), O(1)–C(17)–C(16) 122.1(4).

Acknowledgment

This work was supported by the Natural Science Foundation of China (Project No. 20272052), the Doctoral Program Foundation of National Education Ministry of China, and the State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.