A New Method for the Synthesis of tert-Alkyl Chlorides from tert-Alcohols

David Crich*, Simon M. Fortt

Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK

tert-Alkyl chlorides 5 are prepared in good yield from the corresponding alcohols 1 in a facile two step synthesis. The method involves treatment of the corresponding crude oxalyl monochloride alkyl ester 2 with N-hydroxy-pyridine-2-thione sodium salt 3 in tetrachloromethane at reflux to give the bright yellow \(N_{\text{alkoxo} \text{oxaloyloxypyrindine-2-thione}} \) 4 which undergo decomposition to the chlorides 5 in good yield. The reaction is conveniently monitored by the loss of colour from the mixed anhydride.

We have recently reported novel free radical chain reactions for the reductive deoxygenation of tert-alcohols\(^1\)\(^2\) and for the formation of quaternary carbon centres from tert-alcohols\(^3\)\(^2\). These reactions have the advantages of being little susceptible to steric hindrance and of avoiding rearrangement-prone carbocation intermediates. We now wish to report an extension of this methodology, related to our Hunsdiecker procedure\(^4\)\(^5\) for the formation of tert-chlorides from tert-alcohols. tert-Alkyl chlorides have recently been employed as precursors for quaternary carbon centres by reaction with alkyl titanium,\(^6\) or alkyl aluminium\(^7\) reagents. We were therefore of the opinion that a new, mild and neutral method for the elaboration of tert-alkyl chlorides would find use in organic synthesis.

Thus tert-alcohols 1 were converted into the corresponding oxalyl monochloride alkyl ester 2 by treatment with excess oxalyl chloride in benzene. Crude 2 is then added to a suspension
of N-hydroxyxypiridine-2-thione sodium salt (3) in tetrachloromethane, at reflux under nitrogen, giving the bright yellow N-(alkoxyxolaxoxy)pyridine-2-thiones 4 which underwent decomposition, presumably via an autoinitiated free radical chain mechanism leading to the chlorides 5 in good overall yield (Table).

\[
\begin{align*}
\text{ROH} & \quad \text{ICOCO}_{2}\text{Cl}_{2}\text{C}_{6}H_{5} \quad \text{NaCl} \quad \text{C}_{4}H_{8} \quad \text{Cl}_{2}\text{C} \quad \text{H}_{2} \quad \text{Cl}\quad \text{R} \\
\text{2} & \quad \text{4} \quad \text{6} \quad \text{5a-d} \quad \text{Cl}_{2}\text{C} \quad \text{H}_{2} \quad \text{Cl}\quad \text{R} \\
\text{R} & \quad \text{Cl} \quad \text{Cl}_{2}\text{C} \quad \text{H}_{2} \quad \text{Cl}\quad \text{R}
\end{align*}
\]

We next attempted the conversion of tert-alkols into tert-alkyl bromides by simply replacing tetrachloromethane with bromo-tribromomethane as solvent. Unfortunately we were only able to isolate the products of elimination. The isolation of trichloromethyl pyridyl sulphide (6) in good yield from these experiments implied that the bromides had been formed and that these had undergone base promoted elimination with the pyridyl sulphide as base. We were unable to prevent this elimination even by carrying out the reaction photochemically at room temperature. Application of the procedure to the bridgehead tert-alkol 1-adamantane gave 1-bromoadamantane\(^a\) and trichloromethyl pyridyl sulphide (6) in 65 and 75\% yields respectively.

During the course of this investigation we discovered that the treatment of tris-1-adamantanylmethanol\(^b\) with oxacyl chloride in benzene gave, directly, the previously unknown tris-1-adamantanylmethyl chloride. It is unclear at this stage whether this is due to the action of hydrogen chloride on the alcohol or to a decomposition of this particular oxacyl monochloride alkyl ester. Simple oxacyl monochloride alkyl esters are reported\(^d\) to be stable to at least 150°C, and treatment with pyridine at 100°C is usually required for their conversion to alkyl chlorides.

Formation of tert-Alkyl Chlorides 5 from tert-Alkols 1; General Procedure:

Freshly distilled oxacyl chloride (1 ml, 11 mmol) is added at room temperature to a stirred solution of the alcohol (1 mmol) in dry benzene (5-10 ml), and the mixture stirred overnight at room temperature. After evaporation of the volatiles the crude reaction mixture is taken up in tetrachloromethane (5 ml) and added dropwise to a stirred suspension of N-hydroxyxypiridine-2-thione sodium salt (0.17 g, 1.1 mmol) in tetrachloromethane at reflux. After decolourisation of the thus formed bright yellow solution, the cooled reaction mixture is filtered on celite and evaporated to dryness. Filtration through a short silica gel column gives the pure chlorides (eluant 40-60 petroleum ether) and subsequently trichloromethyl pyridyl sulphide (6) (eluant dichloromethane), whose spectra are identical to those of an authentic sample.

Tris-1-adamantanylmethyl Chloride

Tris-1-adamantanylmethanol (100 mg, 0.23 mmol) is added to a stirred solution of freshly distilled oxacyl chloride (0.64 g 5 mmol) in dry benzene (5 ml) at room temperature. After standing overnight at room temperature removal excess oxacyl chloride gives the crude chloride which is recrystallized from benzene; yield: 97 mg (93\%); mp: 227°C. 1H-NMR (200 MHz, CD\(_2\)Cl\(_2\)/TMS): \(\delta = 1.58 \text{ ppm} (45 H s)\). 13C-NMR (CD\(_2\)Cl\(_2\)/TMS): \(\delta = 30.2, 31.2, 38.3, 39.4, 53.3 \text{ ppm}\).

MS (70 eV); m/e = 416 (M–HCl), 135, 93, 79, C\(_9\)H\(_{14}\)Cl calc. C 82.17 H 7.10 Cl 7.82 (453.1) found 82.12 9.89 7.35

We thank A.G. Neville for a sample of tris-1-adamantanylmethanol and the Nuffield Foundation for an equipment grant.

Received: 23 May 1986

\(\text{Table. Alkyl Chlorides Prepared}
\)

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield (%)</th>
<th>Yield of Sulphide 6 (%)</th>
<th>m.p. (°C)</th>
<th>Lit. NMR (CDCl(_3)/TMS) δ (ppm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>85</td>
<td>70</td>
<td>19</td>
<td>19.6(^a) 0.9 (t, 3H); 1.3 (m, 32H); 1.7 (s, 3H)</td>
</tr>
<tr>
<td>5b</td>
<td>65</td>
<td>70</td>
<td>165(^a)</td>
<td>1.65 (m, 6H); 2.1 (m, 9H)</td>
</tr>
<tr>
<td>5c</td>
<td>65</td>
<td>73</td>
<td>40–42</td>
<td>1.4 (m, 18H); 1.65 (s, 3H); 1.7 (m, 4H)</td>
</tr>
<tr>
<td>5d</td>
<td>95(^a)</td>
<td>70</td>
<td>155(^a)</td>
<td>3.0–3.2 (s, 3H, 18-CH(_3)); 0.74 (s, 3H, 19-CH(_3))</td>
</tr>
</tbody>
</table>

\(\text{1}H\)-NMR (200 MHz, CD\(_2\)Cl\(_2\)/TMS): δ = 1.58 ppm (45 H s).

\(\text{13C}-\text{NMR (CD}\(_2\)\text{Cl}\(_2\)/TMS): δ = 30.2, 31.2, 38.3, 39.4, 53.3 \text{ ppm.}

MS (70 eV); m/e = 416 (M–HCl), 135, 93, 79, C\(_9\)H\(_{14}\)Cl calc. C 82.17 H 7.10 Cl 7.82 (453.1) found 82.12 9.89 7.35

* Sealed tube.
\(\text{3} H, 3\)-Cl, \(\text{3} H, 3\)-Cl.
\(\text{3} H, 3\)-Cl, after recrystallisation.
\(\text{4} H, 4\)-Cl, 19-CH\(_3\) resonates at δ = 0.72 ppm.
\(\text{4} H, 4\)-Cl, 19-CH\(_3\) resonates at δ = 0.72 ppm.

The reactions were conveniently monitored by the disappearance of the bright yellow colour of the N-alkoxyxolaxoxyxopyridine-2-thiones 4. Pure chlorides were readily

\(\text{References:}
\)