Synthesis of (±)-Decan-9-olide (Phoracantholide I) from Cyclohexanone

Jaswant Rai Mahajan, Hugo Clemente de Araújo

Departamento de Química, Universidade de Brasilia, Brasilia, D. F., 70910 - Brazil

Recently, some 10-membered lactones have been isolated from the fungus culture Diplodia pinea¹ and the metasternal secretion of the eucalypt longicorn Phoracantha synonyma². Phoracantholide I and its 4,5-dehydro derivative (Phoracantholide J) were isolated from the latter source⁷ and have been synthesised by several workers⁴,⁶. Moreover, the synthetic decan-9-olide (6) has been transformed³ into the racemic diploidialide A and C; (±)-diploidialide A has also been synthesised by an alternative route⁷.

While most of these syntheses proceed through the cyclisation of an acyclic precursor to a 10-membered lactone, the 6-oxo-9-decanolide (5b) was prepared by oxidative cleavage of the isomeric 1,6-dihydroxy-3-methyl-2-oxabicyclo[4.4.0]decanes, obtained by the alkylation of the adipion di-anion with 3-hydroxy-1-iodobutane³; this ketolactone had also been synthesised previously⁶ from the same diol, prepared by the hydroxylation of the tetrahydrochroman 4.

In the past few years, we have developed several routes to 9- to 16-membered ketolactones and ketolactams by oxidative cleavage⁵ of the appropriate bicyclic precursors as well as by the intramolecular reverse Dieckmann reaction¹⁰ of the suitably substituted cyclohexane-1,3-diones.

Recently, we described the selective reduction of 12-oxo-undecanolide and its sulphur analogue to the corresponding 16-membered lactones¹¹. We here report an alternative route to the 6-oxo-9-decanolide (5b) and subsequent reduction of its tosylhydrazone 5c to the title lactone 6¹².

2-(3-Butenyl)-cyclohexanone (2) is obtained by the alkylation of 2-ethoxyacryloyl-6-cyclohexanone with 4-bromo-1-butene, followed by decarboxylative hydrolysis, as described previously for the preparation of 2-allylcyclohexanone¹³,¹⁴. Oxymercuration—demercuration⁵ of 2 affords the hemiacetal 3, contaminated with a small amount of two products giving spots with higher R values (T.L.C.). Due to the possibility of several diastereoisomeric cyclic forms and their easy dehydration to the corresponding enol ether 4, the hemiacetal 3 melts over a wide range (60-65°C to 102-104°C). Recrystallisation from benzene/petroleum ether, usually affords the first crop as silky needles, m.p. 102-104°C, while the later fractions often melt over the wide range indicated above; however, their I.R. spectra and T.L.C. behaviour are almost identical to each other. Moreover, traces of acidic impurities easily degenerate the higher-melting (102-104°C) product into the lower-melting mixtures.

Attempted acid-catalysed (p-toluenesulphonic acid) dehydration of the hemiacetel 3 in boiling benzene¹¹, results in a mixture of products containing the desired enol ether 4, the 2-(3-butenyl)-cyclohexanone (2), and possibly the isomeric 2-crotylcyclohexa-
none (T.L.C.; 1H-N.M.R.; the latter two products evidently arise by the acid-catalysed rearrangement of the former. Careful chromatographic separation of this mixture over silica gel, eluted with petroleum ether, affords the pure 5,6,7,8-tetrahydrodronorbornalin (4) in 10–20% yield; a colorless liquid; I.R. (neat): $v = 1695, 1156$ cm$^{-1}$; 1H-N.M.R. (CCl$_4$): $\delta = 1.21$ (d, $J = 6.5$ Hz, CH$_2$); 1.3–2.2 (m, 12H); 3.8 ppm (m, 1H). Borowitz et al. encountered difficulties in the purification of this tetrahydrodronorbornalin.5

In face of these difficulties associated with the enol ether 4, we explored the direct hydrolytic nitrosation11 of the parent hemiacetal 3, expecting that it would be in equilibrium with the corresponding enol ether, in the acidic reaction medium. Fortunately, the strategy worked excellently and the desired ketolactone 5b and its oxime 5a were obtained in 70–75% yield. Attempted direct deoxyxygenation11,16 of the ketolactone 5b gave poor results. However, a slight modification of the step-wise procedure17 involving the reduction of the tosylhydrazine 5c, followed by elimination rearrangement of the intermediate tosylhydrazine, yielded the title phoracanthide 1 (6) in 40–45% yield.

4-Bromo-1-butenone and sodium cyanoborohydride were used as received from Fluka AG. Instruments for the physical measurements and other routine experimental procedures have been described in our recent publication.11

2-(3-Butenyl)-cyclohexanol (2): To a stirred solution of 2-ethoxycarbonylcyclohexanol11 (17.0 g, 0.10 mol) in 1 mol potassium t-butoxide in t-butanol (110 ml) is added potassium iodide (1.0 g) and 4-bromo-1-butenone (16.2 g, 123 ml, 0.12 mol). After being stirred under nitrogen at room temperature for 1–2 h, the reaction mixture is gently refluxed on a water bath for 22 24 h, until a test portion gives a negative color reaction with 1% ethanolic iron(III) chloride. The cooled reaction mixture is treated with water (30 ml), extracted with ether (3 \times 50 ml), and 2-(3-butenyl)-2-ethoxy carbonyl-cyclohexanol (1) purified by distillation, affording a mobile colourless liquid; yield: 17.5 g (78%); b.p. 108–112$^\circ$C/3 torr.

I.R. (neat): $v = 1730, 1712, 1645$ cm$^{-1}$.

1H-N.M.R. (CCl$_4$): $\delta = 1.28$ (t, $J = 7$ Hz, 3H, CH$_3$); 1.4–2.7 (m, 12H, 6CH$_2$); 4.20 (q, $J = 7$ Hz, 2H, H-C\equivOCO); 4.7–5.3 (m, 2H, olefinic CH$_2$); 5.4–6.2 ppm (m, 11H, olefinic).

Compound 1 is decarboxylated by refluxing under nitrogen for 10–12 h in ~ 7% aqueous ethanolic (2:1) potassium hydroxide (3 equivalents), as already described for the corresponding 2-allylcycloalkanones14, to give 2-(3-butenyl)-cyclohexanol (2); yield: 60–65%; colourless liquid; b.p. 68–70$^\circ$C/5 torr (Lit.14 b.p. 82–86$^\circ$C/2.5 torr).

I.R. (neat): $v = 1715, 1642$ cm$^{-1}$.

1H-N.M.R. (CCl$_4$): $\delta = 0.9–2.6$ (m, 13H); 4.7–5.2 (m, 2H olefinic CH$_2$); 5.4–6.2 ppm (m, 1H olefinic).

2-Hydroxy-6-methyl-2,3-tetramethylen-3,4,5,6-tetrahydro-2H-pyran (3): A solution of 2-(3-butenyl)-cyclohexanol (2) (3.04 g, 20 mmol) in tetrahydrofuran (20 ml) is added at room temperature to a stirred solution of mercury(II) acetate (6.4 g, 20 mmol) in water (20 ml). After stirring for 10 min, sodium hydrosulfite (2.5 mol, 10 ml) is added, the reaction mixture is cooled in ice/water bath, and treated with a solution of sodium borohydride (400 mg, 10.5 mmol) in sodium hydrosulfite (2.5 mol, 10 ml). After further stirring for 10 min, the reaction mixture is diluted with brine (10–20 ml), filtered through a cotton plug, and extracted with ether (3 \times 50 ml), the extracts being washed with water (20 ml) and brine (20 ml). Drying with sodium sulfate and evaporation affords the crude product usually retaining some metallic mercury, which is removed by passing through a small bed of alumina (activity III). The resulting semi-solid is crystallised from petroleum ether (b.p. 40–60$^\circ$C) containing a small amount of benzene. Several successive solid crops melt from 60–65$^\circ$C to 100–104$^\circ$C, total yield: 75–85%. Recrystallisation of the higher-melting fractions from the same solvent mixture furnishes white silky needles. m.p. 102–104$^\circ$C.

C$_{10}$H$_{12}$O$_2$ calc. C 70.55 H 10.66 (170.3) found 70.48 10.64

I.R. (KBr): $v = 3472, 3350$ cm$^{-1}$; no absorption in the carbonyl region.

The mother-liquor contains the hemiacetal 3, the enol ether 4, and some impurities (T.L.C.). Its hydrolytic nitrosation, in the manner described below for compound 3, affords the oximino-lactone 5a and ketolactone 5b in a total yield of $\sim 40\%$.

6-Oximino-9-decanolide (5a): To a suspension of the hemiacetal mixture 3 (1.7 g, 10 mmol) in 95% ethanol (3–4 ml), containing freshly washed n-butyl nitrite11 (1.1 ml, 1.26 g, ~ 12 mmol), is added 1 normal hydrochloric acid (0.5 ml); complete solution is obtained, and there is a slight exothermic reaction. The closed reaction mixture is surrounded by a tap-water bath and stirred for 4–6 h, occasionally releasing the excess pressure in the first 15–20 min. During this time the crystalline oxime separates from the bluish-green solution. After standing overnight in a refrigerator, the crystalline product is filtered and washed with chilled ethanol. Concentration of the mother-liquid and crystallisation from ethanol furnishes further quantities of the same oxime; total yield: 1.2 g (6 g; 65%). Recrystallisation from the same solvent affords the analytical sample as white glintening plates; m.p. 141–143$^\circ$C.

C$_{12}$H$_{18}$NO$_3$ calc. C 60.28 H 8.60 N 7.03 (199.3) found 60.22 8.56 6.97

I.R. (KBr): $v = 3300, 1721, 1672$ cm$^{-1}$.

1H-N.M.R. (CDCl$_3$): $\delta = 0.26$ (d, $J = 6.5$ Hz, 3H, CH$_3$); 1.4–3.2 (m, 12H, 6CH$_2$); 5.0 (m, 1H, H-C\equivOCO); 4.5 ppm (m, 1H, exchangeable with D$_2$O, C\equivN–OH).

6-Oxo-9-decanolide (5b): The mother liquor (~ 0.6 g) from the above reaction is heated under reflux for 6 h in a mixture of ethanol (3 ml), water (5 ml), and sodium hydrosulfite (1.0 g)14. Excess of ethanol is evaporated and the cooled reaction mixture acidified with 1 normal hydrochloric acid (5 ml). Extraction with ether (3 \times 30 ml), drying with sodium sulfate, and evaporation affords a pale-yellow liquid, which on crystallisation from petroleum ether yields the ketolactone 5b; yield: 10–15%.

Deoximation of the pure oxime 5a (~ 9.9 g, 10 mmol) in the manner described above, using ethanol or dioxan (10 ml), water (20 ml), and sodium hydroxide sulfite (5.2 g) affords a colourless liquid, which on treatment with petroleum ether (b.p. 40–60$^\circ$C) furnishes the product 5b as white shiny crystals; yield: 85–95% yield. Recrystallisation from the same solvent provides the analytical sample as a white shiny solid; m.p. 43–44$^\circ$C (Lit.5 m.p. 44–45$^\circ$C; Lit.6 m.p. 37–37.5$^\circ$C).
January 1981

Communications 51

I.R. (KBr): ν = 1724, 1709, 1252 cm⁻¹.

1H-N.M.R. (CDCl₃): δ = 1.25 (d, J = 6.5 Hz, 3H, CH₃); 1.4-2.9 (m, 12H, 6CH₂); 5.10 ppm (m, 1H, HC - OCO).

The tosylhydrazone 5e, obtained in the usual manner¹⁰, is crystallised from 95% ethanol; yield: ~100%; m.p. 149–151°C.

(±)-Decan-9-olide (6b): To a stirred solution of the tosylhydrazone 5e (1.76 g, 5 mmol) in tetrahydrofuran (20 ml), containing methyl orange indicator (2-3 drops of a 1% solution), is added dropwise, during 25-30 min, sodium cyanoborohydride (630 mg, 10 mmol) dissolved in methanol (10 ml). Simultaneously, a solution of concentrated hydrochloric acid in methanol (1:9) is added at such a rate as to keep the reaction mixture in the red-orange range (pH 3.0-3.8). After further stirring for 1-1.5 h, the excess of the solvents is evaporated, the concentrate diluted with water (20 ml), extracted with ether (3 x 50 ml), and the extracts washed with water (30 ml) and brine (50 ml). Ether is removed, 95% ethanol (25 ml) and sodium acetate (2.5 g) are added, and the mixture is refluxed for 1.5-2.0 h; there is a brisk reaction in the first 10-15 min and a gas is evolved. Excess of ethanol is carefully evaporated, the residue is dissolved in water (20 ml) and extracted with ether (3 x 30 ml), the combined extracts are washed successively with water (10 ml), saturated sodium hydrogen carbonate solution (15 ml), and brine (25 ml). Drying with sodium sulphate and evaporation yields a pale-yellow oil (~900 mg), having an odour similar to that of cyclohexanone. Short-path distillation (bath temperature 100–120°C/5 torr) affords a colourless liquid; yield: 536 mg (63%), still containing some impurities (T.L.C.). Passage through a column of silica gel (30 g), eluting with 1:1 petroleum ether (b.p. 40–60°C) benzene, furnishes the colourless liquid homogeneous on T.L.C.; yield: 380 mg (45%); cf. Ref.¹. I.R. (neat): ν = 1721, 1247 cm⁻¹.

1H-N.M.R. (CCl₄): δ = 1.24 (d, J = 6.5 Hz, 3H, CH₃); 1.0-2.6 (m, 14H, 7CH₂); 4.95 ppm (m, 1H, HC – OCO).

6-Oxo-9-decanolide (5b) has also been prepared by the Michael addition of 1-morpholinocyclohexane to methyl vinyl ketone, followed by lithium aluminium hydride reduction, and hydrolysis to afford a mixture of the hemi-acetate 3 and the corresponding enol ether 4. Moreover, 7-oxo-9-decanolide has been prepared from 2-allylcycloheptanone¹⁲.

We thank CNPq for some financial aid.

Received: July 30, 1980

¹⁵ J. R. Mahajan, H. Carvalho, Synthesis 1979, 518.
J. R. Mahajan, H. C. Araújo, Synthesis 1980, 64.
For abstract see: Ciência e Cultura 32 (suplemento), 407 (1980).
H. C. Araújo, J. R. Mahajan, Synthesis 1978, 228.
C. F. Lane, Synthesis 1975, 135.