A Novel Imide Synthesis via Silyl-Blocked Diamines

J. R. Pratt and S. F. Thames

University of Southern Mississippi, Polymer Science Department, P.O. Box 5165, Southern Station, Hattiesburg, Mississippi 39401, U.S.A.

Two groups1,2 have reported the synthesis of organosilylated polyamic acid resins from N,N'-bis-(trimethylsilyl)diamines and their subsequent conversion to polyimides (Scheme A).

\begin{align*}
\text{(CH}_3\text{)Si-NH-A-NH-Si(CH}_3\text{)}_3 & \xrightarrow{\text{dianhydride/THF, r.t.}} \text{Polyimide} \\
\left[\text{(CH}_3\text{)Si(OOC)}_2\text{COOSi(CH}_3\text{)}_3\right]_n & \xrightarrow{\text{heat}} \text{Polyimide} + \text{(CH}_3\text{)SiOH}
\end{align*}

Scheme A
Table: Experimental Conditions and Results of the Synthesis of Compounds 2.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reaction Conditions</th>
<th>Yield (%)</th>
<th>m.p.</th>
<th>Elemental Analysis</th>
<th>Imide</th>
<th>L.R. (cm⁻¹)</th>
<th>Silyl-R², R¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>DMF, 23 hr, 124°C</td>
<td>89%</td>
<td>235.5-238°</td>
<td>calc. C 71.69 H 4.41</td>
<td>1781<sup>a</sup></td>
<td>1236<sup>a</sup></td>
<td>Silyl-R², R¹</td>
</tr>
<tr>
<td>2b</td>
<td>Diglyme, 27 hr, 156-161°C</td>
<td>61%</td>
<td>255-257.5°</td>
<td>calc. C 74.45 H 4.28</td>
<td>1780<sup>a</sup></td>
<td>1240, 780<sup>a</sup></td>
<td>Silyl-R², R¹</td>
</tr>
<tr>
<td>2c</td>
<td>DMF, 24 hr, 130-141°C</td>
<td>88%</td>
<td>314.5-317°</td>
<td>calc. C 76.66 H 4.18</td>
<td>1784<sup>a</sup></td>
<td>692<sup>a</sup></td>
<td>Silyl-R², R¹</td>
</tr>
</tbody>
</table>

^aCrude yield. ^bUncorrected. ^cKBr pellet. ^dBroad. ^eWeak.
mediate and thus allow the production of a polyimide of higher molecular weight than can be achieved by conventional means.

Bis-[N,N-bis-(trimethylsilyl)-4-aminophenyl]-methylphenylsilane (1b):
To a stirred anhydrous ethereal solution of N,N-bis-[trimethyl-
silyl]-4-bromoaniline (66 g, 0.209 mol) was added 2.25 N butyl-
lithium (93 ml, 0.209 mol) at 0° under nitrogen. After a reaction
period of 1 hr at room temperature, dichloromethylphenylsilane
(20.0 g, 0.1045 mol) was added dropwise. The resultant solution
was stirred overnight; after a 2 hr reflux, the lithium chloride was
removed by filtration and the ether removed in vacuo. Distillation
afforded 1b; yield: 36.7 g (59%); b.p. 202–204.5°/0.03 torr;

C_{31}H_{27}N_5Si_5 calc. C 62.77 H 8.84
(593.2) found 62.56 8.89

I.R. (neat): ν_{max} = 1246, 830, 695 cm⁻¹; this spectrum showed no
NH absorption.

³¹P-N.M.R. (CDCl₃): δ = 7.27 (center of m, 13H_{aromatic}), 0.84 (s, 3H,
single methyl group on silicon), 0.14 ppm (s, 36H, trimethylsilyl
protons).

N,N'-Bis-[4-aminophenolphthalimido]-methylphenylsilane (2b):
Bis-[N,N-bis-(trimethylsilyl)-4-aminophenyl]-methylphenylsilane
(1b: 4.120 g, 0.0069 mol) and recrystallized phthalic anhydride
(2.060 g, 0.0139 mol) in anhydrous diglyme (55 ml) under nitrogen
were refluxed as shown in the Table, collecting 1.021 g (45%) of
hexamethyldisiloxane. The purity of this material was judged to
be ~ 95% by G.L.C. n_{eff}² = 1.3776 (Lit. reports n_{eff}² = 1.3741) as
the reaction progressed. With cooling and the addition of a small
amount of water, the dimide crystallized out of solution to give
a crude, dry product, m.p. 239–242°. Recrystallization from
pyridine/water gave pure 2b: yield: 2.39 g (61%); m.p. 255–257.5°.

The support of this research by the National Aeronautics
and Space Administration, as well as generous supplies of
silicon reagents from Dr. W. H. Daudt of Dow Corning
Corporation, is gratefully acknowledged.

Received: November 13, 1972

General Electric Co.; French Patent 1,437,751 (1966), Compagnie
Francaise Thomson-Houston; C. A. 66, 19155, 96125 (1967).
2 G. Greber, D. Lohmann, Angew. Chem. 81, 918 (1969);