Azobenzene-Based \(\omega \)-Amino Acids and Related Building Blocks: Synthesis, Properties, and Application in Peptide Chemistry

Karola Rück-Braun,* Stefan Kempa, Beate Priewisch, Anja Richter, Sabine Seedorff, Lukas Wallach

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Fax +49(30)31428625; E-mail: karola.rueck-braun@tu-berlin.de

Received 13 July 2009; revised 26 August 2009

Abstract: Azobenzenes are widely used as optical triggers for the development of photosensitive materials. Starting from the literature-known \(\omega \)-amino acids 4,4\(^{\prime}\)-APB 1a and 4,4\(^{\prime}\)-AMPB 2a, \(\omega \)-substituted analogues were synthesized for the incorporation into peptides and proteins. While 4,4\(^{\prime}\)-APB 1a requires special chemistry for peptide synthesis, an Fmoc/t-Bu protecting group strategy is applicable for 3,3\(^{\prime}\)-APB 1b. The versatility of this and other novel azobenzene \(\omega \)-amino acids is demonstrated by the preparation of cyclic photoswitchable phosphopeptides with the binding motif pTyr-Val-Asn-Val. Photochromic properties of the azo subunits and of the corresponding peptides are also presented.

Key words: azo compounds, amino acids, peptides, photoswitch, photochromism

Introduction

Photoswitchable compounds have experienced considerable interest for studying complex living systems using light.\(^1\) One application is based on the modulation of the structure and chemical dynamics of peptides and proteins by site-specific incorporation of a photoswitchable subunit.\(^2,3\) Functionalized photoswitches are also appealing candidates to broaden the range of scaffolds and templates for the design of peptidomimetics.\(^4\)

With the aim to develop photoswitchable Grb2-SH2 antagonists for Ras signal transduction, we initiated a long-term research program directed towards the development of novel photoswitchable building blocks for the synthesis and screening of libraries of cyclic photoswitchable peptide ligands with the binding motif pTyr-Val-Asn-Val. In the past, Ettmayer and co-workers successfully demonstrated that a \(\beta \)-turn conformation centered around this binding motif in cyclic peptides is essential for high-affinity binding to the SH2-domain.\(^5\) If this binding motif is incorporated into a photoswitchable cyclic peptide of suitable ring size, it should be possible to modulate the \(\beta \)-turn structural element and thereby the binding event, through conformational changes arising from the light-induced switching process within the photoswitchable hinge unit.

Our program is founded on the development of novel photoswitchable azobenzene-6,7 and hemithioindigo-based8–11 subunits for application in peptide synthesis. A selection of azobenzenes from our studies is shown in Scheme 1. The peptide library design is also based on variations in the ring size of the cyclic peptides and in the amino acid sequence surrounding the binding motif.10 The first step within an iterative selection process towards photoswitch-
Biographical Sketches

Karola Rück-Braun studied Chemistry at the University of Mainz where she received her Diploma in 1988 and her Ph.D. in 1992, working under the supervision of Prof. Horst Kunz. After postdoctoral studies with Prof. Steven V. Ley at the University of Cambridge (UK) in 1992–1993, she obtained her Habilitation at the University of Mainz in 1998, and became a Professor of Organic Chemistry at the Technische Universität Berlin in 2000. Amongst other awards, she received the ADUC-Habilitation Award in 1998 and held a Habilitandenstipendium of the Deutsche Forschungsgemeinschaft (1993–1996). Her research interests are directed towards the synthesis of heterocycles and photoswitches and include metal-mediated reactions and the development of reaction cascades for the preparation of functionalized heterocycles. Current research topics are the development of photoswitches for biological applications and the design and synthesis of photoswitch-linker-conjugates for nanostructured surfaces. Currently he is carrying out his Ph.D. studies in Prof. Rück-Braun’s group.

Stefan Kempa was born in Berlin in 1980. He studied Chemistry at the Technische Universität Berlin and obtained his Diploma in 2006. Currently he is carrying out his Ph.D. studies in Prof. Rück-Braun’s group.

Beate Priewisch was born in Berlin in 1976. She studied Chemistry at the Technische Universität Berlin and the Universidad de Complutense de Madrid, Spain, and obtained her Diploma in 2002 and her Ph.D. in 2006. Her research focused on the development of photoswitchable amino acids for the photomodulation of the conformation and activity of peptides. Since 2007 she is working as a patent attorney trainee at Polypatent, Overath.

Anja Richter was born in Berlin in 1979. She completed a training as a chemical laboratory assistant at the Schering AG in 2002. Thereafter she studied Chemistry at the Technische Universität Berlin and received her Diploma in 2007 under the supervision of Prof. Rück-Braun. As a scholarship holder of the Fond der Chemischen Industrie, she is currently working as a Ph.D. student in the research group of Prof. Herbert Waldmann at the Max-Planck-Institut für Molekulare Physiologie in Dortmund, focusing on the synthesis of natural products.

Sabine Seedorff was born in Berlin in 1978. She studied Chemistry at the Technische Universität Berlin and obtained her Diploma in 2006. Currently she is carrying out her Ph.D. studies in Prof. Rück-Braun’s group in collaboration with the group of Dr. Peter Schmieder at the Leibniz-Institut für Molekulare Pharmakologie (FMP) in Berlin-Buch.

Lukas Wallach was born in Hydebreck/Cosel, Poland, in 1981. He studied Chemistry at the Technische Universität Berlin and obtained his Diploma in 2008. Currently he is carrying out his Ph.D. studies in Prof. Rück-Braun’s group.
able cyclic phosphopeptides is directed towards the choice of suitable photoswitchable subunits, driven by the evaluation and optimization of synthetic routes. This step includes also the analysis of the photochromic properties of the subunits and of small linear peptides incorporating them.6,8,9 The next step is the synthesis of small libraries of cyclic photoswitchable phosphopeptides and their characterization, for example, by CD spectroscopy.

Herein, we describe the synthesis of cyclic peptides \textit{c-[Gly-pTyr-Val-Asn-Val-Pro-Gly-Azo-]} with novel azobenzene-based \textit{ω}-amino acids (Azo) as backbone constituents.10 The research program is currently being extended by an activity analysis, and will be supplemented by the conformational analysis of selected members of the cyclic phosphopeptide library based on NMR spectroscopy.

Our studies towards novel azobenzene-based photoswitchable subunits started from the literature-known \textit{ω}-amino acids 4,4’-\textit{APB}11 \textit{1a} and 4,4’-\textit{AMPB}7,14,15 \textit{2a} (Scheme 1). Because of the poor nucleophilicity of the amino group in the more rigid \textit{ω}-amino acid 4,4’-\textit{APB} \textit{1a}, the typical peptide coupling reagents cannot be applied.12,13 Instead, amide bond formation requires activation of the amino group by silylation, followed by acylation using amino acid fluorides. We herein report on alternatives to overcome these synthetic limitations.

In \textit{meta}-substituted analogues, resonance effects of the amino group or the carboxyl group with the diazenyl linkage cannot operate (Scheme 1).6,11 As a consequence we expected a higher nucleophilicity of the amino group in 3,3’-\textit{APB} \textit{1b}. Therefore, a typical Fmoc-protocol should be applicable. Furthermore, this \textit{meta}-substitution should also result in an increased conformational freedom of the azobenzene unit16,10 leading to additional configurational isomers in both photoisomeric states. The axes for the rotation of the differently substituted phenyl rings and their dihedral angles β and β' for 3,3’-\textit{APB} \textit{1b} are shown in Scheme 2. These rotary joints are responsible for a higher flexibility of \textit{meta}-substituted azobenzenes. For 3,3’-\textit{AMPB} \textit{2b}, the flexibility is further increased by the methylene group as indicated by the additional axis with the dihedral angle α. Following these considerations, we investigated the synthesis and the photochromic properties of a series of \textit{meta}-substituted analogues of the \textit{ω}-amino acids 4,4’-\textit{APB} \textit{1a} and 4,4’-\textit{AMPB} \textit{2a}. However, during our search for alternative synthetic approaches towards 4,4’-azobenzene structural motifs, particularly suitable as ultra fast light-triggers for protein folding, we also studied the copper-catalyzed N-arylation of \textit{ω}-amino acids with the bromo-substituted azobenzene precursor system \textit{12} (Scheme 1).

Finally, we report on the successful synthesis and characterization of photoswitchable phosphopeptides derived from a small library approach towards four peptides incorporating the \textit{ω}-amino acids 4,4’-\textit{APB} \textit{2a}, 3,3’-\textit{AMPB} \textit{2b}, 3,4’-\textit{AMPB} \textit{2c}, and 3,3’-\textit{APB} \textit{1b}. These studies also include detailed discussions of photochromic properties of differently substituted azobenzenes presented herein.

Synthesis and Peptide Assembling: 3,3’-\textit{APB} \textit{1b} and Other Analogues

The preparation of 3,3’-\textit{APB} \textit{1b}, starting from 3-aminonitrobenzene and 3-nitrosobenzoic acid in basic medium similar to the literature protocol11 for 4,4’-\textit{APB} \textit{1a}, gave no conversion under various reaction conditions; redox processes between the reactants were observed instead. To reduce these side-reactions, the protected precursors \textit{3} and \textit{4} were employed in an alternative approach (Scheme 3), affording the amino acid derivative \textit{5} in 53% yield. Simultaneous hydrolysis of the amide and the ester was achieved by treatment of \textit{5} with aqueous 3 N HCl at 80 °C for 48 hours furnishing 3,3’-\textit{APB} \textit{1b}, quantitatively.

For the application in solid-phase synthesis, compound \textit{1b} was converted into the Fmoc-protected building block \textit{6} with FmocOSu in the presence of NaHCO\textsubscript{3} in dioxane-water in high yield by using a standard protocol.

However, an alternative synthetic route starting from nitrosobenzenes \textit{7} was also investigated (Scheme 4). Condensation of nitrosobenzene \textit{7a} with 3-aminobenzoic acid (\textit{8a}) afforded the nitro-substituted azobenzene \textit{9a} in 93% yield. Subsequent reduction of compound \textit{9a} with sodium sulfide in dioxane–ethanol under reflux gave 3,3’-\textit{APB} \textit{1b} in 75% yield. By following this two-step synthe-
tic route, 3,4′-APB 1c and 4,3′-APB 1d (Scheme 4) were also successfully prepared in good yields via the intermediate nitro-substituted azobenzenes 9b and 9c.18

To verify that the amino group of 3,3′-APB 1b can be acylated by standard peptide coupling reagents, the synthesis of tripeptide 11 was carried out by solution-phase synthesis (Scheme 5). 3,3′-APB 1b was treated with 1.5 equivalents of (S)-H-Val-Ot-Bu using EDC in the presence of HOBt and DIPEA in DMF to obtain the dipeptide 10 in 82% yield. Acylation of 10 with Boc-Gly-OH using TCTU/HOBt/DIPEA furnished tripeptide 11 in 92% yield. According to these findings, the Fmoc-protected 3,3′-APB building block 6 was found to be suitable for solid-phase peptide synthesis using Fmoc-chemistry.

For the synthesis of peptides or peptidomimetics containing a 4,4′-azobenzene structural motif, we also investigated the copper(I)-catalyzed coupling procedures of bromide 127a with α-amino acids (Scheme 6). All methods published in the literature for aryl halides represent catalytic examples of the long-known Ullmann-coupling without the need for disadvantageously high temperatures.19,20 Ma and co-workers successfully demonstrated that these coupling procedures proceed without racemization.19

Treatment of bromide 12 with 1.5 equivalents of (S)-alanine in the presence of 10 mol % copper(I) iodide and 2 equivalents of K3PO4 in 2-(dimethylamino)ethanol at 80 °C gave the coupling product 13b in 65% isolated yield (Scheme 6). During storage of this product at −18 °C amine 14 was observed, presumably formed by decarbox-
ylation furnishing an imine intermediate, prior to hydrolysis to the corresponding aldehyde and amine by-products. Analogously, reactions of compound 12 with (S)-valine and (S)-proline furnished 13a (67%) and 13c (66%). Prior to an optimization of the coupling protocol, the photochromic properties of compound 13b were investigated, which are described below.

The synthesis of the two analogues, 3,3'-AMPB 2b and 3,4'-AMPB 2c, was carried out following our previously published procedure (Scheme 7) for the Fmoc-protected 4,4'-AMPB building block 17a. Condensation reactions of the Fmoc-protected anilines 15a and 15b with nitrosoarene 16 were carried out at room temperature in DMSO–glacial AcOH furnishing the isomeric Fmoc-protected ω-amino acids 17b,c. The Fmoc-group was removed by treatment with 20% aqueous NaOH–THF to give the ω-amino acids 2b,c in good overall yields.

Synthetic studies towards a small library of peptides containing the pTyr-Val-Asn-Val binding motif was carried out with the Fmoc-protected building blocks Fmoc-4,4'-AMPB 17a,c. Fmoc-3,3'-AMPB 17b, Fmoc-3,4'-AMPB 17c, and Fmoc-3,3'-APB 6. The solid-phase synthesis of the target phosphopeptides 20 was carried out using NMP as a solvent, and all amino acids following the phosphotyrosine building block were coupled twice. Removal of the temporary Fmoc-protecting group was achieved using 40% piperidine in NMP. Acidic cleavage from the resin with a mixture of acetic acid, trifluoroethanol, and dichloromethane afforded the linear protected peptides 20 – coupling: Fmoc-protected amino acid 6, 17a–e (4.00 equiv) HCTU (4.00 equiv) DIPEA (8.00 equiv), NMP removal of the Fmoc group: 40% piperidine–NMP – cleavage from the resin: AcOH–TFE–CH2Cl2 (1:1:3) – deprotection: 90% TFA.

Synthesis of meta-substituted AMPB analogues 2b,c

The trityl group was employed as a side-chain protecting group for asparagine, and the dialkylamide protected building block Fmoc-pTyr(NMe2)2-OH was used to incorporate the phosphotyrosine. To avoid the formation of truncated sequences due to a back-folding of the growing peptide chain on the solid support, induced by the β-turn structural element, the assembly of the linear peptides was carried out using NMP as a solvent, and all amino acids following the phosphotyrosine building block were coupled twice. Removal of the temporary Fmoc-protecting group was achieved using 40% piperidine in NMP. Acidic cleavage from the resin with a mixture of acetic acid, trifluoroethanol, and dichloromethane afforded the linear protected peptides 18a–d according to HPLC-ESI-MS analysis. These side-chain-protected peptides were cyclized using a threefold excess of PyBOP and HOBt in the presence of DIPEA in a solution of 3% NMP in dichloromethane (c = 4·10⁻⁴ mol/L). Peptides 19a–c were finally deprotected with 90% trifluoroacetic acid in water. 3,3'-AMPB-peptide 20b and 3,3'-APB-peptide 20c were purified by semi-preparative RP-HPLC. The 4,4'-AMPB-peptide 20a could not be isolated in pure form, and we have been unable to ascertain the reasons for this singular purification problem. The 3,4'-AMPB-peptide 19d was purified after the cyclization procedure by semi-preparative RP-HPLC and finally deprotected, affording the pure cyclic phosphopeptide 20d.
Conformational Analysis by CD Spectroscopy

All three peptides 20b–d were photoresponsive molecules undergoing cis-to-trans isomerization. However, CD spectroscopy revealed significant structural differences between the conformations of the dark-adapted and the irradiated states only for the 3,3′-AMPB-peptide 20c and the 3,4′-AMPB-peptide 20d (Figure 1). This might be due to a decreased flexibility of their photoswitchable subunits, and thus a larger impact of the isomerization process onto the peptide backbone, compared to the 3,3′-AMPB subunit of peptide 20b. The higher flexibility of the latter peptide can be explained by three independent rotary joints in the hinge 3,3′-AMPB 2b (methylene group and two meta-functionalized phenyl rings), in comparison to two rotary joints in the hinges 3,3′-APB 1b (two meta-functionalized phenyl rings) and 3,4′-AMPB 2c (methylene group and one meta-functionalized phenyl ring). For peptide 20b the CD spectra at the best resemble the characteristics of α-helix-like spectra, generally assigned to type I β-turns, (maxima below 200 nm and negative bands in the 220–235 nm region)21 shifted to longer wavelengths, which, however, are not altered upon irradiation with λ = 340 nm (cis-pss; pss = photostationary state) or λ = 405 nm (trans-pss). In the cis-form the 3,3′-APB-peptide 20c displayed the CD spectrum of a β-sheet-like spectrum22 with a maximum at 199 nm and a strong minimum at 215 nm, whereas for the trans-isomer the CD spectrum revealed no significant signals of a defined peptide conformation. On the contrary, for both isomeric forms of the 3,4′-AMPB-peptide 20d maxima below 200 nm and minima at 219 nm were observed, also indicating β-sheet-like spectra. Upon photoisomerization from the trans-form to the cis-form a decrease of [θ]R219 by 3.5·103 deg·cm2·dmol−1 was detected.

Photochromic Analysis

The photochromic properties of a series of azobenzenes presented in this study were investigated in DMSO by means of UV/vis and 1H NMR spectroscopy. All compounds in Table 1, apart from 3,4′-APB 1c, belong to the azobenzene-type of azaaromatics according to the classification of Rau,23 showing two clearly separated absorption maxima, for the lowest lying n-π* transition centered around 430 nm and the π-π* transition at 320–350 nm. The light-induced trans-to-cis isomerization is readily achieved upon illumination at 325, 340, or 405 nm (Table 1 and Figure 2) and shows isosbestic points. 4,4′-APB 1a with donor/acceptor arrangement shows the characteristics of an aminoaobenzene, rather than the effects of a pseudo-stilbene-type azo compound.24 For the trans-isomer, a close energetic proximity of the n-π* and the π-π*-transitions was observed.24 However, peptides derived from 4,4′-APB 1a more or less exhibit the classical features of azobenzene-type azo compounds.12 Peptidomimetic ligands obtained by N-arylation show the characteristics of a typical pseudo-stilbene-type azo compound, as exemplified for compound 13b (Scheme 6 and Figure 2). In dichloromethane, the absorption maximum is located around 397 nm and is shifted to 473 nm in DMSO, due to the increased solvent polarity. After light.

Figure 1 CD-evaluation of the light-induced conformational changes in the photoswitchable peptides 20b–d

![Figure 1](image-url)
induced reversible \(\text{trans-to-cis} \) isomerization with \(\lambda = 365, 385, \) or 405 nm for 1–20 minutes in dichloromethane and with \(\lambda = 480 \) nm for 3–60 minutes in DM-
SO, a fast relaxation was observed, but the corresponding half-lives could not be determined with standard equip-
ment. Thus, incorporation of azobenzene hinge units by N-arylation breaks new ground for light-induced changes of peptide and protein conformations with very short half-
lives of the \(\text{cis} \)-isomeric states.

3,4'-APB 1c belongs to the aminoazobenzene-type azo aromatics,\(^23\) however, peptides derived by amide bond formation should show the typical photochromic proper-
ties of azobenzene-type azo compounds, comparable to the peptides derived from 4,4'-APB 1a.\(^12\) Furthermore,
from the data summarized in Table 1, for 3,3'-APB 1b and 4,3'-APB 1d a close proximity of the two absorption max-
ima is concluded. Strikingly, for both compounds a de-
crease of the intensities of the \(n-\pi^* \) transitions upon \(\text{trans-to-cis} \) isomerization is observed. In comparison with all other compounds (Table 1) this effect correlates with the amino group in \(\text{meta} \)-position.

The thermal \(\text{cis-to-trans} \) isomerization of azobenzene-
type azo compounds in solution follows first order kinet-
ics, and the half-lives \(\tau_{1/2} \) of the \(\text{cis} \)-isomers presented in
Table 1 were determined at 30 °C following the time-
dependent absorption changes by UV/vis spectroscopy
(\(~1\cdot10^{-4} \) M). As expected, the half-life increased in the
APB series with the amino group in \(\text{meta} \)-position
(Table 1, compounds 1c and 1b). In the AMPB series, a
strong increase of the half-life is also observed upon

![Figure 2](image_url)
placement of the carboxyl group in meta-position (compounds 2a and 2c), and a similar trend is seen in the APB series (compounds 1d and 1c).

Furthermore, for 3,3'-APB peptide 20c a half-life of 205 hours was determined in water, and for the 3,3'-APB derivative 5 a half-life of 246 hours was observed in dichloromethane (Table 1). Irradiation of peptide 20c in DMSO-d$_6$ (5.8·10$^{-2}$ M) gave a pss containing 84% of the cis-isomer, as determined by 1H NMR spectroscopy at room temperature using the NH of Gly3 as a probe. For the 3,4'-AMPB peptide 20d a half-life of 231 hours was ascertained in water. Upon irradiation a pss containing 93% of the cis-isomer was reached under RP-HPLC conditions. In the dark adapted state, generally only the trans-isomers of all azobenzenes reported herein were observed. However, for the peptides 20 also traces of the cis-isomers have been detected in isolated cases by 1H NMR spectroscopy.

Summary and Outlook

In conclusion, we have developed practical synthetic routes for a series of novel meta-substituted azobenzene-based α-amino acid building blocks for site-specific incorporation into peptides. We have demonstrated that Fmoc-3,3'-APB 6 is well suited for an Fmoc-based peptide assembly on the solid support. The methylene group in the AMPB series and the meta-functionalized phenyl rings in the APB and the AMPB series are effective rotary joints for introducing flexibility. Using a library approach, these differences in conformational freedom could successfully be demonstrated by CD-evaluation of the light-induced conformational changes of the peptide backbones of four cyclic phosphopeptides with the binding motif pTyr-Val-Asn-Val. Our future efforts will focus on additional concepts to further introduce the properties of azobenzenes for biological applications, including strategies to increase solubility and redox-stability.

Chemicals, including compounds 3, 8a, and 8b, were obtained from Acros, Aldrich, Fluka, or Novabiochem and were used as supplied. Compounds 4, 7a,25 7b,25 12, 16, and 17a were prepared by following the literature procedure.7 Solvents were distilled prior to use: CH$_2$Cl$_2$, (P$_2$O$_5$), EtOAc (K$_2$CO$_3$), pentane (P$_2$O$_5$), MeOH, acetone. Solvents for chromatography were dried according to standard procedures and distilled prior to use.8 All reactions were carried out under N$_2$. 1H NMR spectra were recorded at 400 MHz and 13C NMR spectra at 100.6 MHz on a Bruker AM 400. Residual solvent protons were used as internal standards. All chemical shifts are given in ppm relative to TMS and coupling constants in Hz. Low- and high-resolution mass spectra were obtained on a Varian MAT 95S spectrometer with electron ionization, using an ionization potential of 70 eV. ESI-MS spectra were obtained on a Bruker Esquire 2000 with an ESI voltage of 4 kV and HRMS-ESI spectra on a Thermo Fisher Scientific LTQ Orbitrap XL with an ESI voltage of 5 kV. IR spectra were recorded on a Nicolet Avatar 360 spectrometer. CD spectra were recorded on a JASCO J-715 spectropolarimeter. Melting points were measured with a Büchi melting point apparatus according to Dr. Tottoli and are uncorrected. TLC was carried out on silica gel 60 F$_{254}$ (Merck) and was visualized under UV light (254 nm) or using ninhydrin stain. Column chromatography was performed on silica gel (ICN Biomedicals GmbH silica, 32–63 μm, 60Å).

Methyl 3-[3-(Acetamidophenyl)diazeyl]benzoate (5)

Solid N-(3-aminophenyl)acetamide (3: 9.09 g, 60.6 mmol, 2.00 equiv) was added in one portion to a solution of 4 (5.00 g, 30.3 mmol) in glacial AcOH (300 mL). The mixture was stirred at r.t. for 11 d. H$_2$O (300 mL) was then added, and the precipitate that formed was separated by filtration using a suction filter, washed with H$_2$O (300 mL), and dried (desiccator, Sicacide). The solid was dissolved in EtOAc (300 mL), the mixture was filtered to remove an insoluble black-brown residue, and the filtrate was concentrated under reduced pressure. Recrystallization (CH$_2$Cl$_2$) gave 5 as an orange-yellow solid; yield: 4.80 g (53%); mp 143 °C; R_f = 0.67 (EtOAc).

IR (ATR): 3362, 2930, 1701, 691 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 4.70 (br s, 3 H), 7.35 (d, J = 7.8 Hz, 1 H), 7.56–7.65 (m, 2 H), 7.72–7.80 (m, 2 H), 8.12–8.18 (m, 2 H), 8.37 (s, 1 H).

13C NMR (100.6 MHz, CDCl$_3$): δ = 24.7, 52.5, 113.5, 119.8, 122.8, 124.2, 127.2, 129.3, 129.8, 131.3, 131.8, 138.9, 152.5, 153.0, 166.7, 168.7.

MS (190 °C): m/z (%) = 92 (44), 134 (100), 297 (80, [M]+).

HRMS: m/z ([M]$^+$) calcd for C$_{13}$H$_{11}$N$_3$O$_2$: 241.0853; found: 241.0853.

3-[3-(Aminophenyl)diazeyl]benzoic Acid (1b)

Method 1: Compound 5 (2.00 g, 6.72 mmol) was suspended in aq 3 N HCl (250 mL) and warmed to 80 °C. The resulting solution was stirred at 80 °C for 2 d. The mixture was allowed to attain r.t., and H$_2$O (200 mL) was added. The precipitate was separated by filtration using a suction filter, washed with a small amount of cold H$_2$O, and dried (desiccator, Sicacide). Recrystallization (EtOAc–MeOH) afforded 1b-HCl as an orange solid; yield: 1.74 g (quant); mp 205 °C (dec.); R_f = 0.46 (CH$_2$Cl$_2$–MeOH, 9:1).

IR (ATR): 3362, 2930, 1701, 691 cm$^{-1}$.

1H NMR (200 MHz, DMSO-d$_6$): δ = 4.70 (br s, 3 H), 7.35 (d, J = 7.8 Hz, 1 H), 7.56–7.65 (m, 2 H), 7.72–7.80 (m, 2 H), 8.12–8.18 (m, 2 H), 8.37 (s, 1 H).

13C NMR (100.6 MHz, DMSO-d$_6$): δ = 113.7, 121.3, 122.4, 124.5, 127.5, 130.1, 130.7, 132.2, 132.3, 137.1, 151.7, 152.4, 166.6.

MS (200 °C): m/z (%) = 65 (58), 92 (100), 121 (24), 241 (53, [M]+).

HRMS: m/z ([M]$^+$) calcd for C$_{13}$H$_{11}$N$_3$O$_2$: 241.0851; found: 241.0853.

Method 2: Compound 9a (50.0 mg, 184 μmol) was suspended in EtOH–dioxane (1:1, 3 mL). A solution of Na$_2$S (32–38%, 184 mmol, 9.7 equiv) in EtOH (1.5 mL) was added and the clear red solution was heated to 90 °C in a pressure vessel for 9.5 h. After cooling to r.t., EtOH and dioxane were removed under reduced pressure. Then H$_2$O (10 mL) was added and the solution was adjusted to pH 5.5, using aq 1 N HCl. The precipitate was separated by filtration using a suction filter, washed with aq 1 N HCl (5 mL) and dried (desiccator, Sicacide). By dissolving this precipitate in EtOAc (50 mL) an insoluble blackish brown solid formed, which was filtered and discarded. Removal of the solvent under reduced pressure gave 1b as an orange-yellow solid; yield: 33 mg (75%).

Solid NaHCO$_3$ (782 mg, 9.32 mmol, 2.50 equiv) was added to a solution of 3,3'-APB-OH 1b (900 mg, 3.73 mmol) in dioxane–H$_2$O (1:1, 60 mL). A solution of N-(9H-fluoren-9-ylmethoxycarbonyl)oxysuccinimide (1.45 g, 4.29 mmol, 1.15 equiv) in dioxane (12 L)
and washed with H2O (100 mL) and hexane–EtOAc (3:1, 100 mL), and dried. Compound 6 was obtained as a bright orange solid; yield: 1.50 g (87%); mp 214–216 °C; Rf = 0.75 (EtOAc).

IR (ATR): 3309, 1700, 1544, 1222 cm−1.

1H NMR (400 MHz, DMSO-d6): δ = 4.34 (t, J = 6.7 Hz, 1 H), 4.54 (d, J = 6.7 Hz, 2 H), 7.32–7.79 (m, 10 H), 7.91 (d, J = 7.4 Hz, 2 H), 8.10–8.15 (m, 3 H), 8.36 (t, J = 1.7 Hz, 1 H), 10.05 (s, 1 H), 13.35 (br s, 1 H).

13C NMR (100.6 MHz, DMSO-d6): δ = 46.6, 65.7, 111.0, 118.1, 120.2, 122.3, 125.2, 125.9, 126.8, 127.2, 127.7, 129.3, 129.8, 131.9, 140.2, 140.8, 143.7, 145.2, 151.7, 152.4, 153.5, 167.4.

Dipeptide 10

EDC (357 mg, 1.87 mmol, 1.50 equiv), HOBT (252 mg, 1.87 mmol, 1.50 equiv), DIPEA (326 µL, 24 mg, 1.24 mmol, 1.00 equiv), and compound 1b (300 mg, 1.24 mmol) were successively added to a solution of (S)-valine tert-butyl ester hydrochloride (392 mg, 1.87 mmol, 1.50 equiv) in DMF (25 mL) at 0 °C. Then the mixture was allowed to attain r.t. and was stirred for 36 h. Afterwards, CH2Cl2 (50 mL) was added, and the organic layer was washed withaq 0.5 N HCl (2 × 50 mL),aq NaHCO3 (50 mL), H2O (50 mL), and brine (50 mL), dried (MgSO4), and concentrated in vacuo to give 1d as a colorless solid; yield: 407 mg (76%); mp 227–229 °C (dec.); Rf = 0.38 (CH3Cl–MeOH, 9:1).

IR (ATR): 3347, 3063, 1681, 1623, 1601 cm−1.

1H NMR (400 MHz, DMSO-d6): δ = 7.55 (m, J = 8.2 Hz, 2 H), 7.62–7.67 (m, 2 H), 7.79–7.81 (m, 2 H), 7.90 (t, J = 8.2 Hz, 2 H), 8.13 (d, J = 8.8 Hz, 2 H), 8.18–8.23 (m, 2 H), 8.40–8.44 (m, 3 H).

13C NMR (100.6 MHz, DMSO-d6): δ = 122.6, 123.6, 125.0, 127.8, 130.1, 132.3, 148.7, 151.7, 154.8, 154.6, 166.4.

was added to the oily residue, and a red precipitate was separated by decanting the supernatant mother liquor. The precipitate was dissolved in MeOH (20 mL) and reprecipitated by the addition of H2O twice. Lyophilization gave compound 10 as an orange-red solid; yield: 402 mg (82%); mp 55 °C; [α]28 +61.2 (c = 0.49, CHCl3); Rf = 0.69 (EtOAc–pentane, 3:2).

IR (ATR): 3432, 2932, 1719, 1653, 1602, 1526 cm⁻¹.

1H NMR (400 MHz, CDCl3): δ = 0.87–0.94 (m, 6 H), 1.50 (s, 9 H), 2.25–2.32 (m, 1 H), 3.87 (br s, 2 H), 4.68–4.73 (m, 1 H), 6.79–6.83 (m, 2 H), 7.22–7.26 (m, 1 H), 7.36–7.39 (m, 1 H), 7.59 (t, J = 7.78 Hz, 1 H), 7.74–7.96 (m, 1 H), 8.01–8.03 (m, 1 H), 8.29 (d, J = 1.40 Hz, 1 H).

13C NMR (100.6 MHz, CDCl3): δ = 18.0, 19.1, 21.8, 28.2, 32.0, 57.9, 82.4, 107.6, 115.4, 118.4, 121.5, 125.6, 129.6, 130.0, 135.5, 147.4, 152.7, 153.3, 166.6, 171.4.

MS (190 °C); m/z (%) = 57 (24), 92 (48), 224 (100), 295 (24), 396 (15, [M]⁺). HRMS: m/z [M]⁺ calcd for C22H28N4O3: 396.2161; found: 396.2162.

Tripeptide 11

TCTU (112 mg, 315 μmol, 2.50 equiv), HOBt (43.0 mg, 315 μmol, 2.50 equiv), and peptide 10 (50.0 mg, 1.26 μmol) were successively added to a stirred solution of Boc-Gly-OH (55.0 mg, 315 μmol, 2.50 equiv) in DMF (2.50 mL) at 0 °C. Then the mixture was allowed to attain r.t. and stirred solution of Boc-Gly-OH (55.0 mg, 315 μmol, 2.50 equiv) in DMF (2.50 mL) at 0 °C. Then the mixture was allowed to attain r.t. and stirred at this temperature for 2 h. Afterwards, CH₂Cl₂ (10 mL) was added, and the organic layer was washed with aq 0.5 N HCl (2 × 5 mL), dried (MgSO₄), and concentrated in vacuo. H₂O (10 mL) was added, and the organic layer was washed with aq 0.5 N HCl (2 × 10 mL), aq NaHCO₃ (10 mL), H₂O (50 mL), and brine (50 mL). The vial was decanted the supernatant mother liquor. The precipitate was dissolved in MeOH (5 mL) and reprecipitated by the addition of H₂O, and stirring was continued until no further conversion was detected (TLC). The mixture was then allowed to attain r.t., and H₂O (15 mL) and EtOAc (15 mL) were added. The aqueous layer was separated and extracted with EtOAc (3 × 25 mL). The combined organic layers were washed with brine (2 × 20 mL), dried (MgSO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel).

The crude product was purified by chromatography on silica gel (CH₂Cl₂–MeOH, 40:1 to 9:1) to obtain 11 as a red solid; yield: 110 mg (67%); mp 66 °C; [α]28 = 0.45 (CH₂Cl₂–MeOH, 9:1).

IR (ATR): 3369, 2972, 1709, 1599, 1292, 1135, 1116 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 1.59 (d, J = 7.0 Hz, 3 H), 1.62 (s, 9 H), 4.29 (q, J = 7.0 Hz, 1 H), 5.57 (br s, 1 H), 6.68 (d, J = 8.9 Hz, 2 H), 7.83–8.78 (m, 4 H), 8.08–8.10 (m, 2 H).

13C NMR (100.6 MHz, CDCl₃): δ = 18.6, 19.2, 28.2, 31.4, 81.3, 113.0, 122.0, 125.7, 130.4, 132.5, 145.4, 154.5, 155.2, 165.5, 178.6.

MS (180 °C); m/z (%) = 120 (100), 297 (80), 351 (62), 397 (49, [M]⁺).

(5)-2-[[4-(4-Tert-Butyloxy)phenyl]diazenyl]phenyl-amino)-3-methylbutanoic Acid (13a)

The crude product was purified by chromatography on silica gel (CH₂Cl₂–MeOH, 40:1 to 9:1) to obtain 13a as a red solid; yield: 110 mg (67%); mp 66 °C; [α]28 = 0.45 (CH₂Cl₂–MeOH, 9:1).

IR (ATR): 3369, 2972, 1710, 1599, 1291, 1136 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 1.62 (s, 9 H), 2.05–2.22 (m, 2 H), 2.26–2.42 (m, 2 H), 3.48 (q, J = 8.3 Hz, 1 H), 3.66 (dd, J = 8.6, 3.1 Hz, 1 H), 4.40 (dd, J = 8.6, 2.4 Hz, 1 H), 6.64 (d, J = 9.0 Hz, 2 H), 7.84 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 9.0 Hz, 2 H), 8.08 (d, J = 8.4 Hz, 2 H).

13C NMR (100.6 MHz, CDCl₃): δ = 23.7, 28.2, 30.9, 48.6, 60.8, 81.2, 112.1, 121.9, 125.6, 130.3, 132.3, 144.4, 149.4, 154.5, 165.5, 178.7.

MS (200 °C); m/z (%) = 92 (100), 297 (41), 369 (22, [M]⁺). HRMS: m/z [M]⁺ calcd for C20H23N3O4: 369.1689; found: 369.1689.

(5)-2-[[4-(4-Tert-Butyloxy)phenyl]diazenyl]phenyl)[pyrroline-2-carboxylic Acid (13c)

The crude product was purified by chromatography on silica gel (EtOAc, then EtOAc–MeOH, 19:1 to 1:1) to obtain 13b as a brown-red solid; yield: 99.0 mg (65%); mp 63 °C (dec); Rf = 0.59 (EtOAc–MeOH, 1:1).

IR (ATR): 3735, 2977, 1709, 1599, 1394, 1292, 1135, 1116 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 1.59 (d, J = 7.0 Hz, 3 H), 1.62 (s, 9 H), 4.29 (q, J = 7.0 Hz, 1 H), 5.57 (br s, 1 H), 6.68 (d, J = 8.9 Hz, 2 H), 7.83–8.78 (m, 4 H), 8.08–8.10 (m, 2 H).

13C NMR (100.6 MHz, CDCl₃): δ = 18.7, 28.2, 51.4, 81.3, 112.9, 122.0, 125.7, 130.3, 132.5, 145.4, 149.4, 155.3, 165.5, 178.6.

MS (170 °C); m/z (%) = 92 (100), 297 (41), 369 (22, [M]⁺). HRMS: m/z [M]⁺ calcd for C20H23N3O4: 369.1689; found: 369.1689.
IR (ATR): 3312, 3065, 2971, 2635, 1700, 1604 cm⁻¹.

13C NMR (50.3 MHz, DMSO-d₆): δ = 120.8, 121.8, 122.3, 125.1, 127.1, 127.4, 127.6, 129.5, 130.0, 130.6, 151.9, 156.4, 166.7.

HRMS: m/z [M]+ calcd for C₁₄H₁₃N₃O₂: 255.1007; found: 255.1008.

3-[[4-(Aminoethyl)phenyl]diazenyl]benzoic Acid (2c)
A solution of the Fmoc-protected α-amino acid 17c (200 mg, 419 μmol) in THF (16 mL) was treated with 20% aq NaOH (16 mL) for 48 h. Then aq 2 M HCl was added (pH 1), and the resulting precipitate was filtered. The crude material was washed with small amounts of cold H₂O and THF and dried under reduced pressure, to afford 2c as a yellow solid; yield: 74.0 mg (69%); mp > 253 °C (dec.); Rₛ = 0.12 (CH₂Cl₂–MeOH–AcOH, 50:48:2).

IR (ATR): 2920, 1691, 1626, 1592, 1519, 1527, 1667.

MS (330 °C): m/z = 77 (55), 89 (22), 121 (46), 255 (92, [M]+).

HRMS: m/z [M]+ calcd for C₁₄H₁₃N₃O₂: 255.1008; found: 255.1006.

Acknowledgment
We thank the Deutsche Forschungsgemeinschaft (SFB 498 and DFG-Cluster of Excellence 314), the Volkswagen Foundation, and the Fonds der Chemischen Industrie for financial support. We also thank Prof. Dr. Josef Wachtveitl (Johann Wolfgang Goethe-Universität, Frankfurt am Main) and Dr. Peter Schmieder (FMP, Berlin-Buch) for useful discussions.

References
FEATURE ARTICLE

Azobenzene-Based ω-Amino Acids in Peptide Chemistry

4267