Iodogen: A Novel Reagent for the Oxidation of Urazoles under Heterogeneous Conditions

Ahmad Khoramabadi-zad,*a Azam Shiri,a Mohammad Ali Zolfigol,a Shadpour Mallakpourb

a Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamadan, Iran
b Organic Polymer Chemistry Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran
Fax +98(31)18257407; E-mail: khoram@basu.ac.ir

Received 9 April 2009; revised 20 April 2009

Abstract: Iodogen is employed as an efficient oxidizing agent for the conversion of urazoles and bis-urazoles into the corresponding 1,2,4-triazole-3,5-diones with the stability of iodogen and simple work-up procedure make it a safe and convenient source of chlorine in comparison to chlorine gas, which is a highly toxic oxidizing agent. During the reaction, iodogen is transformed into an environmentally benign and easily removable by-product (diphenyglycoluril which is insoluble in dichloromethane). Despite its advantages, there has been limited application of iodogen in organic synthesis. We have thus investigated iodogen as a mild reagent for the oxidation of urazoles and bis-urazoles under heterogeneous conditions (Scheme 1). Iodogen can be easily prepared from diphenyglycoluril. The oxidation reactions are heterogeneous as the solid substrates 1 and 3 are insoluble in the reaction solvent (dichloromethane) whereas the products 2 and 4 are soluble in dichloromethane.

SYNTHESIS 2009, No. 16, pp 2729–2732
Advanced online publication: 14.07.2009
DOI: 10.1055/s-0029-1216902; Art ID: Z06909SS
© Georg Thieme Verlag Stuttgart · New York
It should be noted that with the exception of iodogen as the oxidizing agent, attempts to oxidize urazoles using other active N-chloro reagents such as N-chlorosaccharin (II), chloramine-T (III), N-chlorophthalimide (IV) and N-chlorosuccinimide (V) failed (Figure 2). In the case of N,N'-dichlorophenobarbital (VI), urazoles were oxidized into the corresponding 1,2,4-triazole-3,5-diones, however, we were unable to isolate the products due to their high sensitivity.

Herein, we report a simple and inexpensive method for the efficient oxidation of various urazoles 1 and bis-urazoles 3 into the corresponding 1,2,4-triazole-3,5-diones 2 and 4 under optimized heterogeneous conditions using iodogen (I) (Table 1).

A plausible mechanism for this reaction involves in situ generated chlorine cations acting as the oxidizing species. Subsequent elimination of hydrogen chloride then yields the 1,2,4-triazole-3,5-dione (Scheme 2).

Table 1: Oxidation of Urazoles 1 and Bis-Urazoles 3 into the Corresponding 1,2,4-Triazole-3,5-diones 2 and 4 Using Iodogen*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Urazole</th>
<th>Product</th>
<th>R¹</th>
<th>R²</th>
<th>Iodogen (mmol)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Mp (°C) Found</th>
<th>Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2a</td>
<td>H</td>
<td>Me</td>
<td>1.0</td>
<td>2.5</td>
<td>100</td>
<td>98–99</td>
<td>97–98²⁶⁶a</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2b</td>
<td>H</td>
<td>Et</td>
<td>0.5</td>
<td>0.66</td>
<td>100</td>
<td>53–55</td>
<td>54–55²⁶⁶a</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>2c</td>
<td>Na⁺</td>
<td>n-Pr</td>
<td>0.45</td>
<td>1</td>
<td>89</td>
<td>41–44</td>
<td>40–42²⁶⁶a</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>2d</td>
<td>H</td>
<td>c-Hex</td>
<td>0.5</td>
<td>0.33</td>
<td>92</td>
<td>95–96</td>
<td>95–97²⁶⁶a</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>2e</td>
<td>H</td>
<td>Ph</td>
<td>0.5</td>
<td>1</td>
<td>96</td>
<td>169–170</td>
<td>171–175²⁶⁶a</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>2f</td>
<td>H</td>
<td>4-ClC₆H₄</td>
<td>0.5</td>
<td>1.5</td>
<td>91</td>
<td>130–133</td>
<td>132–135²⁶⁶a</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>2g</td>
<td>H</td>
<td>3,4-Cl₂C₆H₄</td>
<td>0.5</td>
<td>1.25</td>
<td>94</td>
<td>113–115</td>
<td>111–113²⁶⁶a</td>
</tr>
<tr>
<td>8</td>
<td>1h</td>
<td>2h</td>
<td>H</td>
<td>4-O₂NC₆H₄</td>
<td>1.0</td>
<td>2.5</td>
<td>90</td>
<td>125–127</td>
<td>125–126²⁶⁶a</td>
</tr>
<tr>
<td>9</td>
<td>1i</td>
<td>2i</td>
<td>H</td>
<td>4-MeOCC₆H₄</td>
<td>0.5</td>
<td>1.25</td>
<td>95</td>
<td>87–90</td>
<td>89–93²⁸⁸</td>
</tr>
<tr>
<td>10</td>
<td>1j</td>
<td>2j</td>
<td>H</td>
<td>4-t-BuC₆H₄</td>
<td>0.5</td>
<td>0.58</td>
<td>95</td>
<td>122–127</td>
<td>122–126²⁸</td>
</tr>
<tr>
<td>11</td>
<td>3a</td>
<td>4a</td>
<td>Na⁺</td>
<td>(CH₃)₃</td>
<td>1.0</td>
<td>2</td>
<td>93</td>
<td>144–150</td>
<td>145–150²⁶⁶a</td>
</tr>
<tr>
<td>12</td>
<td>3b</td>
<td>4b</td>
<td>H</td>
<td>C₆H₅CH₂C₆H₄</td>
<td>2.0</td>
<td>2.5</td>
<td>87</td>
<td>183 (dec.)</td>
<td>180–185 (dec.)²⁶⁶a</td>
</tr>
</tbody>
</table>

*a Reaction in CH₂Cl₂ at r.t.

b The products are known and their spectra and physical data are reported in the literature.

c Yield of isolated product.

d % Conversion, as these compounds are very volatile.
In conclusion, we have described iodogen (I) as a novel reagent for the efficient and practical oxidation of urazoles and bis-urazoles under heterogeneous conditions. This system could be used for the oxidation of a range of urazoles under mild and safe conditions.

Chemicals were purchased from Fluka, Merck and Aldrich. Melting points were measured using a Stuart Scientific SMP3 apparatus and are uncorrected. The 1H NMR (90 MHz) and 13C NMR (22.5 MHz) spectra were recorded in CDCl$_3$ using a Jeol FX90Q spectrometer. The oxidation products were characterized by comparison of their spectral (IR, 1H and 13C NMR) and physical data with authentic samples prepared by reported procedures. NMR spectroscopic data are provided for representative compounds.

4-Phenyl-1H-1,2,4-triazole-3,5-dione (2e); Typical Procedure
A mixture of 4-phenylurazole (1e) (0.176 g, 1 mmol) and iodogen (I) (0.216 g, 0.5 mmol) in CH$_2$Cl$_2$ (10 mL) was stirred at r.t. for 1 h. The reaction mixture was filtered and the solvent evaporated to give 2e as a red, crystalline solid; yield: 0.167 g (96%).

1H NMR (90 MHz, CDCl$_3$): δ = 7.5 (s, 5 H, ArH).

13C NMR (22.5 MHz, CDCl$_3$): δ = 124.3, 126.9, 129.9, 158.0.

4-Methyl-1H-1,2,4-triazole-3,5-dione (2a)
Pink crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 3.3 (s, 3 H, CH$_3$).

4-Butylphenyl-1H-1,2,4-triazole-3,5-dione (2b)
Pink crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 1.3 (t, J = 7.0 Hz, 2 H, CH$_2$).

13C NMR (22.5 MHz, CDCl$_3$): δ = 12.7, 36.7, 159.2.

4-(4-Chlorophenyl)-1H-1,2,4-triazole-3,5-dione (2f)
Red crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 7.4 (s, 4 H, ArH).

13C NMR (22.5 MHz, CDCl$_3$): δ = 125.1, 128.1, 130.3, 135.6, 157.8.

4-(4-Nitrophenyl)-1H-1,2,4-triazole-3,5-dione (2h)
Red crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 7.9–8.4 (m, 4 H, ArH).

13C NMR (22.5 MHz, CDCl$_3$): δ = 124.0, 125.4, 135.1, 147.7, 157.8.

4-(4-Methoxyphenyl)-1H-1,2,4-triazole-3,5-dione (2i)
Dark-red crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 3.9 (s, 3 H, OCH$_3$), 7.0–7.4 (m, 4 H, ArH).

13C NMR (22.5 MHz, CDCl$_3$): δ = 55.6, 115.2, 125.6, 158.0, 160.2.

4-(4-Ethylphenyl)-1H-1,2,4-triazole-3,5-dione (2j)
Red crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 1.3 (s, 9 H, CH$_3$), 7.2–7.5 (m, 4 H, ArH).

4,4'-Hexane-1,6-diylbis(1H-1,2,4-triazole-3,5-dione) (4a)
Pink crystals.

1H NMR (90 MHz, CDCl$_3$): δ = 1.3–1.6 (m, 8 H), 3.6 (t, J = 7.0 Hz, 4 H).

13C NMR (22.5 MHz, CDCl$_3$): δ = 25.5, 27.0, 41.1, 159.2.

Acknowledgment
The authors would like to thank Dr. Gholamabbas Chehardoli for his kind assistance, and are grateful for financial support of this work from Bu-Ali Sina University, Hamadan, Iran.

References

(29) As the product 4-substituted-3H-1,2,4-triazole-3,5-diones are very volatile, it is important that the temperature be maintained below 50 °C during evaporation of the solvent to prevent loss of material.